Advertisement

Proximity effects on the phosphorescent properties of dinuclear salicylaldiminato cyclometalated iridium(III) complexes linked with polymethylene spacers

  • Soichiro Kawamorita
  • Bijak Riyandi Ahadito
  • Takeshi NaotaEmail author
Article
  • 17 Downloads

Abstract

The synthesis, structure and photophysical properties of dinuclear bis(phenylpyridine)(salicylaldiminato)Ir(III) complexes bearing polymethylene linkers are described herein. Chiral and achiral dinuclear Ir complexes bearing short (n = 2), medium (n = 5) and long (n = 8) polymethylene linkers were prepared by reacting [Ir(2-phenylpyridinato)IrCl]2 with the corresponding salicylaldimine derivatives. The facial configurations of the coordination sites and the polymethylene-linked structures were unequivocally established based on X-ray crystallography. The emission wavelengths of these polymethylene-linked binuclear complexes in 2-MeTHF in a glassy state at 77 K were found to vary with the length of the linker, such that a hypsochromic shift from yellow to green was observed upon changing from pentamethylene (n = 5) or octamethylene (n = 8) to ethylene (n = 2) linkages. X-ray crystallography and 1H nuclear magnetic resonance analysis combined with density functional theory calculations demonstrated that the present chromism arises from variations in the proximity and conformational rigidity between the two iridium cores, both of which are controlled by the length of the polymethylene linkage.

Notes

Acknowledgements

This work was supported by a JSPS KAKENHI Grant (Number JP16H06516).

Supplementary material

11243_2019_368_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3899 kb)

References

  1. 1.
    Lamansky S, Djurovich PI, Murphy D, Abdel-Razzaq F, Lee H, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304–4312PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) J Am Chem Soc 125:7377–7387PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lowry MS, Bernhard S (2006) Chem Eur J 12:7970–7977PubMedCrossRefGoogle Scholar
  4. 4.
    Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, Goddard WA III, Thompson ME (2009) J Am Chem Soc 131:9813–9822PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Yersin H (ed) (2008) Highly efficient OLEDs with phosphorescent materials. Wiley, WeinheimGoogle Scholar
  6. 6.
    Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Adv Mater 23:926–952PubMedCrossRefGoogle Scholar
  7. 7.
    Buckley A (ed) (2013) Organic light-emitting diodes (oleds): materials, devices and applications. Woodhead Publishing, OxfordGoogle Scholar
  8. 8.
    Ma D-L, Wu C, Tang W, Gupta A-R, Lee F-W, Li G, Leung C-H (2018) J Mater Chem B 6:537–544CrossRefGoogle Scholar
  9. 9.
    Lo KK-W, Zhang KY (2012) RSC Adv 2:12069–12083CrossRefGoogle Scholar
  10. 10.
    Tsuboyama A, Takiguchi T, Okada S, Osawa M, Hoshino M, Ueno K (2004) Dalton Trans 1115–1116Google Scholar
  11. 11.
    Yang X, Xu X, Dang J-S, Zhou G, Ho C-L, Wong W-Y (2016) Inorg Chem 55:1720–1727PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lanoë P-H, Tong CM, Harrington RW, Probert MR, Clegg W, Williams JAG, Kozhevnikov VN (2014) Chem Commun 50:6831–6834CrossRefGoogle Scholar
  13. 13.
    Maity R, Hohloch S, Su C-Y, van der Meer M, Sarkar B (2014) Chem Eur J 20:9952–9961PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Fernández-Cestau J, Giménez N, Lalinde E, Montaño P, Moreno MT, Sánchez S (2015) Organometallics 34:1766–1778CrossRefGoogle Scholar
  15. 15.
    Zheng Y, Batsanov AS, Fox MA, Al-Attar HA, Abdullah K, Jankus V, Bryce MR, Monkman AP (2014) Angew Chem Int Ed 53:11616–11619CrossRefGoogle Scholar
  16. 16.
    Prokhorov AM, Santoro A, Williams JAG, Bruce DW (2012) Angew Chem Int Ed 51:95–98CrossRefGoogle Scholar
  17. 17.
    Martín M, Sola E, Tejero S, López JA, Oro LA (2006) Chem Eur J 12:4057–4068PubMedCrossRefGoogle Scholar
  18. 18.
    Lafolet F, Welter S, Popović Z, De Cola L (2005) J Mater Chem 15:2820–2828CrossRefGoogle Scholar
  19. 19.
    Auffrant A, Barbieri A, Barigelletti F, Lacour J, Mobian P, Collin J-P, Sauvage J-P, Ventura B (2007) Inorg Chem 46:6911–6919PubMedCrossRefGoogle Scholar
  20. 20.
    Li G, Chen Y, Wang J, Lin Q, Zhao J, Ji L, Chao H (2013) Chem Sci 4:4426–4433CrossRefGoogle Scholar
  21. 21.
    Chen Y, Xu W, Zuo J, Ji L, Chao H (2015) J Mater Chem B 3:3306–3314CrossRefGoogle Scholar
  22. 22.
    Li G, Wu Y, Shan G, Che W, Zhu D, Song B, Yan L, Su Z, Bryce MR (2014) Chem Commun 50:6977–6980CrossRefGoogle Scholar
  23. 23.
    Donato L, McCusker CE, Castellano FN, Zysman-Colman E (2013) Inorg Chem 52:8495–8504PubMedCrossRefGoogle Scholar
  24. 24.
    Yao S-Y, Ou Y-L, Ye B-H (2016) Inorg Chem 55:6018–6026PubMedCrossRefGoogle Scholar
  25. 25.
    van Diemen JH, Hage R, Haasnoot JG, Lempers HEB, Reedijk J, Vos JG, De Cola L, Barigelletti F, Balzani V (1992) Inorg Chem 31:3518–3522CrossRefGoogle Scholar
  26. 26.
    Auffrant A, Barbieri A, Barigelletti F, Collin J-P, Flamigni L, Sabatini C, Sauvage J-P (2006) Inorg Chem 45:10990–10997PubMedCrossRefGoogle Scholar
  27. 27.
    Liu B, Monro S, Lystrom L, Cameron CG, Colón K, Yin H, Kilina S, McFarland SA, Sun W (2018) Inorg Chem 57:9859–9872PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Naota T, Koori H (2005) J Am Chem Soc 127:9324–9325PubMedCrossRefGoogle Scholar
  29. 29.
    Komiya N, Muraoka T, Iida M, Miyanaga M, Takahashi K, Naota T (2011) J Am Chem Soc 133:16054–16061PubMedCrossRefGoogle Scholar
  30. 30.
    Naito M, Souda H, Koori H, Komiya N, Naota T (2014) Chem Eur J 20:6991–7000PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Naito M, Inoue R, Iida M, Kuwajima Y, Kawamorita S, Komiya N, Naota T (2015) Chem Eur J 21:12927–12939PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Naito M, Komiya N, Naota T (2016) Org Chem Front 3:1286–1294CrossRefGoogle Scholar
  33. 33.
    Inoue R, Kawamorita S, Naota T (2016) Chem Eur J 22:5712–5726PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Komiya N, Kageyama T, Naito M, Naota T (2013) Acta Cryst C 69:503–505CrossRefGoogle Scholar
  35. 35.
    Naito M, Komiya N, Naota T (2015) J Mol Struct 1102:230–234CrossRefGoogle Scholar
  36. 36.
    Sprouse S, King KA, Spellane PJ, Watts RJ (1984) J Am Chem Soc 106:6647–6653CrossRefGoogle Scholar
  37. 37.
    Burnett MN, Johnson CK (1996) ORTEP-III: Oak Ridge thermal ellipsoid plot program for crystal structure illustrations, report ORNL-6895. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  38. 38.
    Becke AD, Yarkony DR (eds) (1995) Modern electronic structure theory, part II. World Scientific, SingaporeGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  40. 40.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  41. 41.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  42. 42.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  43. 43.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  44. 44.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449CrossRefGoogle Scholar
  45. 45.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224CrossRefGoogle Scholar
  46. 46.
    Li J, Shen P, Zhao Z, Tang BZ (2019) CCS Chem 1:181–196CrossRefGoogle Scholar
  47. 47.
    Wangoli PA, Kinunda G (2018) New J Chem 42:214–227CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations