Ruthenium [NNN] and [NCN]-type pincer complexes with phosphine coligands: synthesis, structures and catalytic applications

  • Bo Zhang
  • Haiying Wang
  • Xuechao Yan
  • Yu-Ai Duan
  • Shuai GuoEmail author
  • Fei-Xian Luo


A series of ruthenium [NNN]- or [NCN]-type complexes (37) bearing PPh3 ancillary ligands have been synthesized from pyridine- or phenylene-bridged bis(triazoles) 1 and 2. In the case of [NNN]-pincer complex 3, an unusual and unexpected cis-orientation adopted by two sterically demanding PPh3 ligands was observed, and such configuration proved to be unchanged in solution for a long time. By contrast and as expected, the two phosphines are found to be trans to each other in the case of [NCN]-type pincer complex 4, but an oxidation of RuII center to RuIII occurred. Complex cis-3 underwent ligand exchanges leading to the formations of diphosphine derivatives 5 and 6. As a representative, cis-3 was treated with the base in isopropanol affording a mixture of Ru–hydrido complexes with various phosphine binding modes, one of which (trans-7) bearing two trans-standing phosphines has been successfully isolated and fully characterized. The catalytic performances of all newly synthesized Ru complexes have been examined and compared in transfer hydrogenations of ketones and enones, in which mono-phosphine complexes proved to be significantly superior to their diphosphine counterparts. The catalytic process proved to involve Ru–H key intermediates, but the trans-oriented Ru–H species is unlikely to be the main catalytic contributor. In particular, the best performer cis-3 exhibits high chemoselectivity in certain cases catalyzing α,β-unsaturated ketones, whose behavior is quite different compared to most precedents.



The authors thank “General Project of Scientific Research Program of Beijing Education Commission” (Grant No. KM201810028007), National Natural Science Foundation of China (Grant No. 21502122) and Beijing Natural Science Foundation (Grant No. 2192012) for financial support. The author Dr. Shuai Guo also highly appreciates the support from Yenching Young Scholar Cultivation Program of Capital Normal University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11243_2019_362_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)


  1. 1.
    Byrne JP, Kitchen JA, Gunnlaugsson T (2014) Chem Soc Rev 43:5302PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Haldón E, Nicasio MC, Pérez PJ (2015) Org Biomol Chem 13:9528PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Liang L, Astruc D (2011) Coord Chem Rev 255:2933CrossRefGoogle Scholar
  4. 4.
    Hein JE, Fokin VV (2010) Chem Soc Rev 39:1302PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Meldal M, Tornøe CW (2008) Chem Rev 108:2952PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kolb HC, Finn MG, Sharpless KB (2004) Angew Chem Int Ed 2001:40Google Scholar
  7. 7.
    Schulze B, Friebe C, Hager MD, Winter A, Hoogenboom R, Görls H, Schubert US (2009) Dalton Trans 5:787CrossRefGoogle Scholar
  8. 8.
    Yang W, Zhong Y (2013) Chin J Chem 31:329CrossRefGoogle Scholar
  9. 9.
    Byrne JP, Kitchen JA, Kotova O, Leigh V, Bell AP, Boland JJ, Albrecht M, Gunnlaugsson T (2014) Dalton Trans 43:196PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Gunanathan C, Milstein D (2014) Chem Rev 114:12024PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Younus HA, Su W, Ahmad N, Chen S, Verpoort F (2015) Adv Synth Catal 357:283CrossRefGoogle Scholar
  12. 12.
    Younus HA, Ahmad N, Su W, Verpoort F (2014) Coord Chem Rev 276:112CrossRefGoogle Scholar
  13. 13.
    Freeman GR, Williams JAG (2013) Top Organomet Chem 40:89CrossRefGoogle Scholar
  14. 14.
    Deng H, Yu Z, Dong J, Wu S (2005) Organometallics 24:4110CrossRefGoogle Scholar
  15. 15.
    Wang L, Liu T (2018) Chin J Catal 39:327CrossRefGoogle Scholar
  16. 16.
    Wang Q, Chai H, Yu Z (2017) Organometallics 36:3638CrossRefGoogle Scholar
  17. 17.
    Chai H, Liu T, Yu Z (2017) Organometallics 36:4136CrossRefGoogle Scholar
  18. 18.
    Chai H, Wang Q, Liu T, Yu Z (2016) Dalton Trans 45:17843PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wang Q, Wu K, Yu Z (2016) Organometallics 35:1251CrossRefGoogle Scholar
  20. 20.
    Chai H, Liu T, Wang Q, Yu Z (2015) Organometallics 34:5278CrossRefGoogle Scholar
  21. 21.
    Menéndez-Pedregal E, Vaquero M, Lastra E, Gamasa P, Pizzano A (2015) Chem Eur J 21:549PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Li K, Niu J-L, Yang M-Z, Li Z, Wu L-Y, Hao X-Q, Song M-P (2015) Organometallics 34:1170CrossRefGoogle Scholar
  23. 23.
    Paul B, Chakrabarti K, Kundu S (2016) Dalton Trans 45:11162PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Shi J, Hu B, Chen X, Shang S, Deng D, Sun Y, Shi W, Yang X, Chen D (2017) ACS Omega 2:3406PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Toda T, Saitoh K, Yoshinari A, Ikariya T, Kuwata S (2017) Organometallics 36:1188CrossRefGoogle Scholar
  26. 26.
    Melle P, Manoharan Y, Albrecht M (2018) Inorg Chem 57:11761PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Shi J, Hu B, Gong D, Shang S, Hou G, Chen D (2016) Dalton Trans 45:4828PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Karthikeyan T, Sankararaman S (2009) Tetrahedron Lett 50:5834CrossRefGoogle Scholar
  29. 29.
    Fabbrizzi P, Cicchi S, Brandi A, Sperotto E, van Koten G (2009) Eur J Org Chem 31:5423CrossRefGoogle Scholar
  30. 30.
    Crowley JD, Bandeen PH, Hanton LR (2010) Polyhedron 29:70CrossRefGoogle Scholar
  31. 31.
    Wang H, Zhang B, Yan X, Guo S (2018) Dalton Trans 47:528PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Vicente J, Arcas A, Bautista D, Jones PG (1997) Organometallics 16:2127CrossRefGoogle Scholar
  33. 33.
    Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201CrossRefGoogle Scholar
  34. 34.
    Bampos N, Field LD, Messerle BA (1993) Organometallics 12:2529CrossRefGoogle Scholar
  35. 35.
    Wang Q, Chai H, Yu Z (2018) Organometallics 37:584CrossRefGoogle Scholar
  36. 36.
    Du W, Wu P, Wang Q, Yu Z (2013) Organometallics 32:3083CrossRefGoogle Scholar
  37. 37.
    Du W, Wang L, Wu P, Yu Z (2012) Chem Eur J 18:11550PubMedCrossRefGoogle Scholar
  38. 38.
    Ye W, Zhao M, Du W, Jiang Q, Wu K, Wu P, Yu Z (2011) Chem Eur J 17:4737PubMedCrossRefGoogle Scholar
  39. 39.
    Wang D, Astruc D (2015) Chem Rev 115:6621PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Bartoszewicz A, Ahlsten N, Martín-Matute B (2013) Chem Eur J 19:7274PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Li Y-Y, Yu S-L, Shen W-Y, Gao J-X (2015) Acc Chem Res 48:2587PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Alonso F, Riente P, Yus M (2011) Acc Chem Res 44:379PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Morris RH (2009) Chem Soc Rev 38:2282PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Farrar-Tobar RA, Tin S, de Vries JG (2018) Organometallics for Green Catalysis. Topics Organomet Chem 63:193CrossRefGoogle Scholar
  45. 45.
    Farrar-Tobar RA, Wei Z, Jiao H, Hinze S, de Vries JG (2018) Chem Eur J 24:2725PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Melle P, Albrecht M (2019) Chimia 73:299PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Horn S, Gandolfi C, Albrecht M (2011) Eur J Inorg Chem 18:2863CrossRefGoogle Scholar
  48. 48.
    Liu T, Chai H, Wang L, Yu Z (2017) Organometallics 36:2914CrossRefGoogle Scholar
  49. 49.
    Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176CrossRefGoogle Scholar
  50. 50.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryCapital Normal UniversityBeijingPeople’s Republic of China
  2. 2.College of Life and Environment ScienceMinzu University of ChinaBeijingPeople’s Republic of China

Personalised recommendations