Ruthenium [NNN] and [NCN]-type pincer complexes with phosphine coligands: synthesis, structures and catalytic applications
- 64 Downloads
Abstract
A series of ruthenium [NNN]- or [NCN]-type complexes (3–7) bearing PPh3 ancillary ligands have been synthesized from pyridine- or phenylene-bridged bis(triazoles) 1 and 2. In the case of [NNN]-pincer complex 3, an unusual and unexpected cis-orientation adopted by two sterically demanding PPh3 ligands was observed, and such configuration proved to be unchanged in solution for a long time. By contrast and as expected, the two phosphines are found to be trans to each other in the case of [NCN]-type pincer complex 4, but an oxidation of RuII center to RuIII occurred. Complex cis-3 underwent ligand exchanges leading to the formations of diphosphine derivatives 5 and 6. As a representative, cis-3 was treated with the base in isopropanol affording a mixture of Ru–hydrido complexes with various phosphine binding modes, one of which (trans-7) bearing two trans-standing phosphines has been successfully isolated and fully characterized. The catalytic performances of all newly synthesized Ru complexes have been examined and compared in transfer hydrogenations of ketones and enones, in which mono-phosphine complexes proved to be significantly superior to their diphosphine counterparts. The catalytic process proved to involve Ru–H key intermediates, but the trans-oriented Ru–H species is unlikely to be the main catalytic contributor. In particular, the best performer cis-3 exhibits high chemoselectivity in certain cases catalyzing α,β-unsaturated ketones, whose behavior is quite different compared to most precedents.
Notes
Acknowledgements
The authors thank “General Project of Scientific Research Program of Beijing Education Commission” (Grant No. KM201810028007), National Natural Science Foundation of China (Grant No. 21502122) and Beijing Natural Science Foundation (Grant No. 2192012) for financial support. The author Dr. Shuai Guo also highly appreciates the support from Yenching Young Scholar Cultivation Program of Capital Normal University.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Byrne JP, Kitchen JA, Gunnlaugsson T (2014) Chem Soc Rev 43:5302PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Haldón E, Nicasio MC, Pérez PJ (2015) Org Biomol Chem 13:9528PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Liang L, Astruc D (2011) Coord Chem Rev 255:2933CrossRefGoogle Scholar
- 4.Hein JE, Fokin VV (2010) Chem Soc Rev 39:1302PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Meldal M, Tornøe CW (2008) Chem Rev 108:2952PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Kolb HC, Finn MG, Sharpless KB (2004) Angew Chem Int Ed 2001:40Google Scholar
- 7.Schulze B, Friebe C, Hager MD, Winter A, Hoogenboom R, Görls H, Schubert US (2009) Dalton Trans 5:787CrossRefGoogle Scholar
- 8.Yang W, Zhong Y (2013) Chin J Chem 31:329CrossRefGoogle Scholar
- 9.Byrne JP, Kitchen JA, Kotova O, Leigh V, Bell AP, Boland JJ, Albrecht M, Gunnlaugsson T (2014) Dalton Trans 43:196PubMedCrossRefPubMedCentralGoogle Scholar
- 10.Gunanathan C, Milstein D (2014) Chem Rev 114:12024PubMedCrossRefPubMedCentralGoogle Scholar
- 11.Younus HA, Su W, Ahmad N, Chen S, Verpoort F (2015) Adv Synth Catal 357:283CrossRefGoogle Scholar
- 12.Younus HA, Ahmad N, Su W, Verpoort F (2014) Coord Chem Rev 276:112CrossRefGoogle Scholar
- 13.Freeman GR, Williams JAG (2013) Top Organomet Chem 40:89CrossRefGoogle Scholar
- 14.Deng H, Yu Z, Dong J, Wu S (2005) Organometallics 24:4110CrossRefGoogle Scholar
- 15.Wang L, Liu T (2018) Chin J Catal 39:327CrossRefGoogle Scholar
- 16.Wang Q, Chai H, Yu Z (2017) Organometallics 36:3638CrossRefGoogle Scholar
- 17.Chai H, Liu T, Yu Z (2017) Organometallics 36:4136CrossRefGoogle Scholar
- 18.Chai H, Wang Q, Liu T, Yu Z (2016) Dalton Trans 45:17843PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Wang Q, Wu K, Yu Z (2016) Organometallics 35:1251CrossRefGoogle Scholar
- 20.Chai H, Liu T, Wang Q, Yu Z (2015) Organometallics 34:5278CrossRefGoogle Scholar
- 21.Menéndez-Pedregal E, Vaquero M, Lastra E, Gamasa P, Pizzano A (2015) Chem Eur J 21:549PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Li K, Niu J-L, Yang M-Z, Li Z, Wu L-Y, Hao X-Q, Song M-P (2015) Organometallics 34:1170CrossRefGoogle Scholar
- 23.Paul B, Chakrabarti K, Kundu S (2016) Dalton Trans 45:11162PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Shi J, Hu B, Chen X, Shang S, Deng D, Sun Y, Shi W, Yang X, Chen D (2017) ACS Omega 2:3406PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Toda T, Saitoh K, Yoshinari A, Ikariya T, Kuwata S (2017) Organometallics 36:1188CrossRefGoogle Scholar
- 26.Melle P, Manoharan Y, Albrecht M (2018) Inorg Chem 57:11761PubMedCrossRefPubMedCentralGoogle Scholar
- 27.Shi J, Hu B, Gong D, Shang S, Hou G, Chen D (2016) Dalton Trans 45:4828PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Karthikeyan T, Sankararaman S (2009) Tetrahedron Lett 50:5834CrossRefGoogle Scholar
- 29.Fabbrizzi P, Cicchi S, Brandi A, Sperotto E, van Koten G (2009) Eur J Org Chem 31:5423CrossRefGoogle Scholar
- 30.Crowley JD, Bandeen PH, Hanton LR (2010) Polyhedron 29:70CrossRefGoogle Scholar
- 31.Wang H, Zhang B, Yan X, Guo S (2018) Dalton Trans 47:528PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Vicente J, Arcas A, Bautista D, Jones PG (1997) Organometallics 16:2127CrossRefGoogle Scholar
- 33.Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201CrossRefGoogle Scholar
- 34.Bampos N, Field LD, Messerle BA (1993) Organometallics 12:2529CrossRefGoogle Scholar
- 35.Wang Q, Chai H, Yu Z (2018) Organometallics 37:584CrossRefGoogle Scholar
- 36.Du W, Wu P, Wang Q, Yu Z (2013) Organometallics 32:3083CrossRefGoogle Scholar
- 37.Du W, Wang L, Wu P, Yu Z (2012) Chem Eur J 18:11550PubMedCrossRefGoogle Scholar
- 38.Ye W, Zhao M, Du W, Jiang Q, Wu K, Wu P, Yu Z (2011) Chem Eur J 17:4737PubMedCrossRefGoogle Scholar
- 39.Wang D, Astruc D (2015) Chem Rev 115:6621PubMedCrossRefPubMedCentralGoogle Scholar
- 40.Bartoszewicz A, Ahlsten N, Martín-Matute B (2013) Chem Eur J 19:7274PubMedCrossRefPubMedCentralGoogle Scholar
- 41.Li Y-Y, Yu S-L, Shen W-Y, Gao J-X (2015) Acc Chem Res 48:2587PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Alonso F, Riente P, Yus M (2011) Acc Chem Res 44:379PubMedCrossRefPubMedCentralGoogle Scholar
- 43.Morris RH (2009) Chem Soc Rev 38:2282PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Farrar-Tobar RA, Tin S, de Vries JG (2018) Organometallics for Green Catalysis. Topics Organomet Chem 63:193CrossRefGoogle Scholar
- 45.Farrar-Tobar RA, Wei Z, Jiao H, Hinze S, de Vries JG (2018) Chem Eur J 24:2725PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Melle P, Albrecht M (2019) Chimia 73:299PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Horn S, Gandolfi C, Albrecht M (2011) Eur J Inorg Chem 18:2863CrossRefGoogle Scholar
- 48.Liu T, Chai H, Wang L, Yu Z (2017) Organometallics 36:2914CrossRefGoogle Scholar
- 49.Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176CrossRefGoogle Scholar
- 50.Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339CrossRefGoogle Scholar