Advertisement

Synthesis and structural characterization of (η5-Dp)Ru(PPh3)2H (Dp = C8H9, 1,2-dihydropentalenyl)

  • Charles A. Mebi
  • Brian J. FrostEmail author
Article
  • 11 Downloads

Abstract

5-Dp)Ru(PPh3)2H (Dp = C8H9, 1,2-dihydropentalenyl) was synthesized in 90% yield by reaction of (η5-Dp)Ru(PPh3)2Cl with sodium formate. (η5-Dp)Ru(PPh3)2H was characterized by 1H and 31P NMR spectroscopy and IR spectroscopy. The Ru–H appears in the 1H NMR spectrum upfield at −11.6 ppm, indicative of a metal hydride. In the IR spectrum, the νRu–H was observed at 1920 cm−1. The solid-state structure of (η5-Dp)Ru(PPh3)2H (1) was determined by X-ray crystallography. Compound 1 has similar structural parameters to (η5-Cp)Ru(PPh3)2H and (η5-Ind)Ru(PPh3)2H.

Notes

Acknowledgements

Support from the National Science Foundation (CHE-0226402) is acknowledged for funding for the X-ray diffractometer.

References

  1. 1.
    Dedieu A (ed) (1992) Transition metal hydrides. VCH, New YorkGoogle Scholar
  2. 2.
    Peruzzini M, Poli R (eds) (2001) Recent advances in hydride chemistry. Elsevier, New YorkGoogle Scholar
  3. 3.
    Clapham SE, Hadzovic A, Morris RH (2004) Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248:2201–2237CrossRefGoogle Scholar
  4. 4.
    Mebi CA, Frost BJ (2005) Effect of pH on the biphasic catalytic hydrogenation of benzylidene acetone using CpRu(PTA)2H. Organometallics 24:2339–2346.  https://doi.org/10.1021/om048987r CrossRefGoogle Scholar
  5. 5.
    Mebi CA, Nair RP, Frost BJ (2007) pH dependent selective transfer hydrogenation of α,β-unsaturated carbonyls in aqueous media utilizing half-sandwich ruthenium(II) complexes. Organometallics 26:429–438.  https://doi.org/10.1021/om060892x CrossRefGoogle Scholar
  6. 6.
    Nair RP, Kim TH, Frost BJ (2009) Atom transfer radical addition reactions of CCl4, CHCl3, and p-tosyl chloride catalyzed by Cp′Ru(PPh3)(PR3)Cl complexes. Organometallics 28:4681–4688.  https://doi.org/10.1021/om900075h CrossRefGoogle Scholar
  7. 7.
    Nair RP, Pineda-Lanorio JA, Frost BJ (2012) Atom transfer radical addition (ATRA) of carbon tetrachloride and chlorinated esters to various olefins catalyzed by Cp′Ru(PPh3)(PR3)Cl complexes Inorg. Chim Acta 380:96–103.  https://doi.org/10.1016/j.ica.2011.11.008 Google Scholar
  8. 8.
    Lee W-C, Sears JM, Enow RA, Eads K, Krogstad DA, Frost BJ (2013) Hemilabile β-aminophosphine ligands derived from 1,3,5-triaza-7-phosphaadamantane (PTA): application to aqueous ruthenium catalyzed nitrile hydration. Inorg Chem 52:1737–1746.  https://doi.org/10.1021/ic301160x CrossRefGoogle Scholar
  9. 9.
    Sears JM, Lee W-C, Frost BJ (2015) Water soluble diphosphine ligands based on 1,3,5-triaza-7-phosphaadamantane (PTA-PR2): synthesis, coordination chemistry, and ruthenium catalyzed nitrile hydration Inorg. Chem Acta 431:248–257.  https://doi.org/10.1016/j.ica.2015.03.033 Google Scholar
  10. 10.
    Frost BJ, Mebi CA (2004) Aqueous organometallic chemistry: synthesis, structure, and reactivity of the water-soluble metal hydride, CpRu(PTA)2H. Organometallics 23:5317–5323.  https://doi.org/10.1021/om049501 CrossRefGoogle Scholar
  11. 11.
    Lanorio JP, Mebi CA, Frost BJ (2019) The synthesis, structure, and H/D exchange reactions of water-soluble half-sandwich ruthenium(II) hydrides of indenyl and dihydropentalenyl. Organometallics 38:2031–2041.  https://doi.org/10.1021/acs.organomet.9b00084 CrossRefGoogle Scholar
  12. 12.
    Mebi CA, Frost BJ (2007) Isomerization of trans-[Ru(PTA)4Cl2] to cis-[Ru(PTA)4Cl2] in water and organic solvent: revisiting the chemistry of [Ru(PTA)4Cl2]. Inorg Chem 46:7115–7120.  https://doi.org/10.1021/ic700971n CrossRefGoogle Scholar
  13. 13.
    Bonomo L, Solari E, Latronico M, Scopelliti R, Floriani C (1999) meso-Octaethylporphyrinogen displaying site selectivity in the stepwise synthesis of polymetallic aggregates with interesting redox properties: the p-binding ability of metalla-porphyrinogens. Chem Eur J 5:2040–2047.  https://doi.org/10.1002/(SICI)1521-3765(19990702)5:7%3c2040:AID-CHEM2040%3e3.0.CO;2-4 CrossRefGoogle Scholar
  14. 14.
    Bau R, Chaw-Kuo CB, Knox AR, Knox S, Stone FGA (1974) A new product from the reaction of cyclooctatetraene with Ru3(CO)12: crystal and molecular structure of Ru3(CO)65-C8H9)-(η7-C8H9). J Organomet Chem 82:C43–C46.  https://doi.org/10.1016/S0022-328X(00),89545-5 CrossRefGoogle Scholar
  15. 15.
    Brown DB, Dyson PJ, Johnson BFG, Martin CM, Parker DG, Parsons S (1997) Cluster-mediated ring contraction: synthesis and characterisation of [Ru63-H)(μ42-CO)2(CO)135-C5H4Me)] and [Ru63-H)(μ42-CO)2(CO)135-C5H3C3H6)]. Dalton Trans 47:1909–1914.  https://doi.org/10.1039/a700990i CrossRefGoogle Scholar
  16. 16.
    Kirss RU, Ernst RD, Arif AM (2004) Chloro(η5-dihydropentalenyl)bis(triphenylphosphine)ruthenium(II): synthesis, structural characterization and catalytic activity in the dimerization of phenylacetylene. J Organomet Chem 689:419–428.  https://doi.org/10.1016/j.jorganchem.2003.09.052 CrossRefGoogle Scholar
  17. 17.
    Kondo T, Tsunawaki F, Ura Y, Sadaoka K, Iwasa T, Wada K, Mitsudo T-A (2005) Synthesis, structure, and reactivity of novel ruthenium(II) phenolate complexes. Organometallics 24:905–910.  https://doi.org/10.1021/om0491600 CrossRefGoogle Scholar
  18. 18.
    Wang S-G, Park SH, Cramer N (2018) A readily accessible class of chiral Cp ligands and their application in RuII-catalyzed enantioselective syntheses of dihydrobenzoindoles. Angewandte Chemie 57:5459–5462.  https://doi.org/10.1002/anie.201802244 CrossRefGoogle Scholar
  19. 19.
    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C: Struct Chem C71:3–8.  https://doi.org/10.1107/S2053229614024218 Google Scholar
  20. 20.
    Smith K-T, Rømming C, Tilset M (1993) Unexpected disproportionation mechanism for proton-transfer reactions between 17-electron metal hydride cation radicals and neutral 18-electron metal hydrides. J Am Chem Soc 115:8681–8689.  https://doi.org/10.1021/ja00072a022 CrossRefGoogle Scholar
  21. 21.
    Wilczewski T, Bocheńska M, Biernat JF (1981) Cyclopentadienyl-ruthenium complexes I. The reactivity of some -cyclopentadienyl-bistriphenylphosphine-ruthenium(II) complexes. J Organomet Chem 215:87–96.  https://doi.org/10.1016/S0022-328X(00)84619-7 CrossRefGoogle Scholar
  22. 22.
    Conroy-Lewis FM, Simpson SJ (1987) Preparation and reactivity of the pentamethylcyclopentadienyl complexes preparation and reactivity of the pentamethylcyclopentadienyl complexes [(η5-C5Me5)Ru(PPh3)(L)Cl] (L = CO, ButNC) and [(η5-C5Me5)Ru(L)2Cl] (L = ButNC, norbornadiene). J Organomet Chem 322:221–228.  https://doi.org/10.1016/0022-328X(87)85009-X CrossRefGoogle Scholar
  23. 23.
    Jai G, Lough AJ, Morris RH (1992) Synthesis and the kinetic and thermodynamic acidity of.eta.2-dihydrogen and dihydride complexes of the type [Ru(C5Me5)H2L2]+. X-ray crystal structure determination of the complex [Ru(C5Me5)(η2-H2)(PPh2CH2PPh2)]BF4. Organometallics 11:161–171CrossRefGoogle Scholar
  24. 24.
    Oro LA, Ciriano MA, Campo M (1985) Indenyl complexes of ruthenium(II). Crystal structure of [Ru(CO)(PPh3)25-C9H7)]ClO4·½CH2Cl2. J Organomet Chem 289:117–131.  https://doi.org/10.1016/0022-328X(85)88033-5 CrossRefGoogle Scholar
  25. 25.
    Gamasa MP, Gimeno J, González-Bernardo C, Martín-Vaca BM, Borge J, García-Granda S (2003) η5-Indenylruthenium(II) hydride complexes: synthesis and protonation reactions. Inorg Chim Acta 347:181–188.  https://doi.org/10.1016/S0020-1693(02)01457-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of NevadaRenoUSA

Personalised recommendations