Two coordination polymers based on mixed 1,4-bis(benzimidazo-1-yl)benzene and O-donor linker ligands: syntheses, crystal structures and properties

  • Zhuo-Ling Chen
  • Youzhen Dong
  • Qing-Wen Liu
  • Rong-Rong Bian
  • Wei-Wei Cheng
  • Yun-Shan XueEmail author
  • Mei-Pin LiuEmail author


Two coordination polymers based on 1,4-bis(benzimidazo-1-ly)benzene (L) and O-donor linking co-ligands, namely {[ZnL(mipa)(H2O)]}n (1) and {[Cd2L2(sdba)Cl2]}n (2) (H2mipa = 5-methylisophthalic acid, H2sdba = 4,4′-sulfonyldibenzoic acid), have been synthesized under solvothermal conditions and structurally characterized by X-ray single-crystal diffraction. Compound 1 has a 1D chain structure, forming 2D layers by hydrogen bonds. Adjacent layers stack over each other in an ABCD manner along the c-axis to further pack into a 3D supramolecular structure supported by ππ interactions. Compound 2 possesses an intriguing 3D architecture, which is constructed from dinuclear [Cd2L4Cl2] secondary building units and V-shaped sdba2− linkers. Both compounds show strong photoluminescence at room temperature with peaks at 362 and 356 nm, respectively, assigned to intraligand and/or ligand-to-ligand charge transfer transitions. Compound 2 can be used as a highly selective probe for Hg2+ detection in aqueous solution based on luminescence quenching. The activity of compound 2 as a photocatalyst for the degradation of methylene blue under UV irradiation has been explored.



This work was supported by the National Natural Science Foundation of China (Grant No. 21501147), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160442), University Science Research Surface Project of Jiangsu Province (Grant No. 16KJB150039) and A Project Funded by the Excellent Specialties Program Development of Jiangsu Higher Education Institutions (Grant No. PPZY2015B113).

Supplementary material

11243_2019_323_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4443 kb)


  1. 1.
    Vellingiri K, Philip L, Kim KH (2017) Coord Chem Rev 353:159–179CrossRefGoogle Scholar
  2. 2.
    Park HD, Dinca M, Roman-Leshkov Y (2018) J Am Chem Soc 140:10669–10672CrossRefGoogle Scholar
  3. 3.
    Dong XW, Yang Y, Che JX, Zuo J, Li XH, Gao L, Hu YZ, Liu XY (2018) Green Chem 20:4085–4093CrossRefGoogle Scholar
  4. 4.
    Zhang J, Huang Y, Yue D, Cui Y, Yang Y, Qian G (2018) J Mater Chem B 6:5174–5180CrossRefGoogle Scholar
  5. 5.
    Jiang M, Li P, Wu P, Zhang F, Tian X, Deng C, Wang J (2018) Chem Commun 54:9131–9134CrossRefGoogle Scholar
  6. 6.
    Sun X, Yao S, Yu C, Li G, Liu C, Huo Q, Liu Y (2018) J Mater Chem A 6:6363–6369CrossRefGoogle Scholar
  7. 7.
    Zhang M, Zhou W, Pham T, Forrest KA, Liu W, He Y, Wu H, Yildirim T, Chen B, Space B (2017) Angew Chem Int Ed 56:11426–11430CrossRefGoogle Scholar
  8. 8.
    Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weselinski LJ, Solovyeva V, Adil K, Spanopoulos L, Trikalitis PN, Emwas AH (2015) J Am Chem Soc 137:13308–13318CrossRefGoogle Scholar
  9. 9.
    Prasetya N, Donose BC, Ladewig BP (2018) J Mater Chem A 6:16390–16402CrossRefGoogle Scholar
  10. 10.
    Meng X, Zhang X, Bing Y, Xu N, Shi W, Cheng P (2016) Inorg Chem 55:12938–12943CrossRefGoogle Scholar
  11. 11.
    Han J, Wang D, Du YH, Xi S, Hong J, Yin S, Chen Z, Zhou T, Xu R (2015) J Mater Chem A 3:20607–20613CrossRefGoogle Scholar
  12. 12.
    Li M, Zhao S, Peng YF, Li BL, Li HY (2013) Dalton Trans 42:9771–9776CrossRefGoogle Scholar
  13. 13.
    Hao JM, Yu BY, Van Hecke K, Cui GH (2015) CrystEngComm 17:2279–2284CrossRefGoogle Scholar
  14. 14.
    Zhu X, Zhao S, Peng YF, Li BL, Wu B (2013) CrystEngComm 15:9154–9159CrossRefGoogle Scholar
  15. 15.
    Li CY, Li L, Hu TL (2011) J Inorg Organomet Polym 21:682–687CrossRefGoogle Scholar
  16. 16.
    Li L, Hu TL, Zeng YF, Bu XH (2010) Sci China Chem 53:2170–2176CrossRefGoogle Scholar
  17. 17.
    Li ZX, Xu Y, Zuo Y, Li L, Pan Q, Hu TL, Bu XH (2009) Cryst Growth Des 9:3904–3909CrossRefGoogle Scholar
  18. 18.
    Li ZX, Hu TL, Ma H, Zeng YF, Li CJ, Tong ML, Bu XH (2010) Cryst Growth Des 9:1138–1144CrossRefGoogle Scholar
  19. 19.
    Wu MK, Yi FY, Fang Y, Xiao XW, Wang SC, Pan LQ, Zhu SR, Tao K, Han L (2017) Cryst Growth Des 17:5458–5464CrossRefGoogle Scholar
  20. 20.
    Hu T, Wang X, Xue Z, Zhang X, Wang X (2017) Polyhedron 127:449–457CrossRefGoogle Scholar
  21. 21.
    SMART and SADABS (1997) Bruker AXS Inc., MadisonGoogle Scholar
  22. 22.
    Sheldrick GM (2015) Acta Crystallogr Sect C 71:3–8CrossRefGoogle Scholar
  23. 23.
    Hu T, Wang X, Xue Z, Zhang X, Wang X (2017) Polyhedron 127:449–457CrossRefGoogle Scholar
  24. 24.
    Blatov VA (2004) TOPOS, A multipurpose crystallochemical analysis with the program package. Samara State University, SamaraGoogle Scholar
  25. 25.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  26. 26.
    Valeur B (2002) Molecular fluorescence: principles and application. Wiley-VCH, WeinheimGoogle Scholar
  27. 27.
    Ma LF, Wang LY, Hu JL, Wang YY, Yang GP (2009) Cryst Growth Des 9:5334–5342CrossRefGoogle Scholar
  28. 28.
    Sun D, Yan ZH, Blatov VA, Wang L, Sun DF (2013) Cryst Growth Des 13:1277–1289CrossRefGoogle Scholar
  29. 29.
    Liu L, Ding J, Huang C, Li M, Hou H, Fan Y (2014) Cryst Growth Des 14:3035–3041CrossRefGoogle Scholar
  30. 30.
    Hao J, Yu B, Van Hecke K, Cui G (2015) CrystEngComm 17:2279–2293CrossRefGoogle Scholar
  31. 31.
    Kan WQ, Liu B, Yang J, Liu YY, Ma JF (2012) Cryst Growth Des 12:2288–2298CrossRefGoogle Scholar
  32. 32.
    Das MC, Xu H, Wang Z, Srinivas G, Zhou W, Yue YF, Nesterov VN, Qian GD, Chen B (2011) Chem Commun 47:11715–11717CrossRefGoogle Scholar
  33. 33.
    Zhang T, Lin W (2014) Chem Soc Rev 43:5982–5993CrossRefGoogle Scholar
  34. 34.
    Ramasundaram S, Seid MG, Choe JW, Kim EJ, Chung YC, Cho K, Lee C, Hong SW (2016) Chem Eng J 306:344–349CrossRefGoogle Scholar
  35. 35.
    Wu XY, Qi HX, Ning JJ, Wang JF, Ren ZG, Lang JP (2015) Appl Catal B 168:98–104CrossRefGoogle Scholar
  36. 36.
    Liu J, Xiao J, Wang D, Sun W, Gao X, Yu H, Liu H, Liu Z (2017) Cryst Growth Des 17:1096–1102CrossRefGoogle Scholar
  37. 37.
    Yang HX, Liu TF, Cao MN, Li HF, Gao SY, Cao R (2010) Chem Commun 46:2429–2431CrossRefGoogle Scholar
  38. 38.
    Meng XM, Fan CB, Bi CF, Zong ZA, Zhang X, Fan YH (2016) CrystEngComm 18:2901–2912CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Chemistry and Environmental EngineeringYancheng Teachers UniversityYanchengPeople’s Republic of China
  2. 2.School of Chemistry and BioengineeringNanjing Normal University Taizhou CollegeTaizhouPeople’s Republic of China
  3. 3.National Center of Quality Supervision and Inspection for Tungsten and Rare Earth ProductsGanzhouPeople’s Republic of China

Personalised recommendations