Advertisement

Transition Metal Chemistry

, Volume 44, Issue 5, pp 415–423 | Cite as

Metal transition complexes of tridentate Schiff base ligands derived from 2-hydrazinopyridine: synthesis, spectroscopic characterization and X-ray structures

  • Amar Diop
  • Mamou Sarr
  • Mayoro Diop
  • Ibrahima Elhadj Thiam
  • Aliou Hamady Barry
  • Simon Coles
  • James Orton
  • Mohamed GayeEmail author
Article
  • 170 Downloads

Abstract

Mononuclear complexes of 1-(pyridin-2-ylmethylidene)-2-(pyridin-2-yl)hydrazine (HL1) and 1-(pyridin-2-yl)-2-(1-(pyridin-2-yl)ethylidene)hydrazine (HL2), [Mn(HL1)(Cl2)(H2O)] (1), [Zn(HL1)(CH3COO)2]·(H2O)3 (2), [Mn(HL2)2]·(ClO4)2 (3) and [Cu(HL2)(NO3)2(H2O)] (4) were synthesized and characterized by physicochemical and spectroscopic methods and X-ray structure determination. The mononuclear compounds 1, 2 and 4 contain one ligand molecule per metal atom while the manganese (II) atom in compound 3 is coordinated to two ligand molecules. Both ligands coordinated to the transition metal center in a tridentate fashion through two Npyridyl atoms and one Nimino atom. The chloride and acetate anions coordinate in monodentate manner, respectively, in complex 1 and in complex 2. In complex 3, the perchlorate groups remain uncoordinated. In complex 4, the nitrate anions act in unidentate fashion. The molar conductance value indicates that the complexes obtained from HL1 are non-electrolytes while those obtained from HL2 are 2:1 electrolytes in DMF solutions. The X-ray structures reveal octahedral geometry for complexes 1, 3, 4 and trigonal bipyramidal environment for 2.

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

  1. 1.
    Vigato PA, Tamburini S (2004) Coord Chem Rev 248:1717–2128CrossRefGoogle Scholar
  2. 2.
    Guricová M, Pižl M, Smékal Z, Nádherný L, Čejka J, Eigner V, Hoskovcová I (2018) Inorg Chim Acta 477:248–256CrossRefGoogle Scholar
  3. 3.
    Cao W, Liu Y, Zhang T, Jia J (2018) Polyhedron 147:62–68CrossRefGoogle Scholar
  4. 4.
    Zaltariov M-F, Cazacu M, Avadanei M, Shova S, Balan M, Vornicu N, Vlad A, Dobrov A, Varganici C-D (2015) Polyhedron 100:121–131CrossRefGoogle Scholar
  5. 5.
    Shabbir M, Akhter Z, Ashraf AR, Ismail H, Habib A, Mirza B (2017) J Mol Struct 1149:720–726CrossRefGoogle Scholar
  6. 6.
    Upadhyay KK, Kumar A, Upadhyay S, Mishra PC (2008) J Mol Struct 873:5–16CrossRefGoogle Scholar
  7. 7.
    Yahsi Y, Kara H (2014) Spectrochim Acta A Mol Biomol Spectrosc 127:25–31CrossRefGoogle Scholar
  8. 8.
    Singh DP, Allam BK, Singh KN, Singh VP (2015) J Mol Catal Chem 398:158–163CrossRefGoogle Scholar
  9. 9.
    Valentová J, Varényi S, Herich P, Baran P, Bilková A, Kožíšek J, Habala L (2018) Inorg Chim Acta 480:16–26CrossRefGoogle Scholar
  10. 10.
    Iftikhar B, Javed K, Khan MSU, Akhter Z, Mirza B, Mckee V (2018) J Mol Struct 1155:337–348CrossRefGoogle Scholar
  11. 11.
    Mahmoud WH, Mahmoud NF, Mohamed GG (2017) J Organomet Chem 848:288–301CrossRefGoogle Scholar
  12. 12.
    Fouda MFR, Abd-Elzaher MM, Abdelsamaia RA, Labib AA (2007) Appl Organomet Chem 21:613–625CrossRefGoogle Scholar
  13. 13.
    Ceyhan G, Köse M, McKee V, Uruş S, Gölcü A, Tümer M (2012) Spectrochim Acta A Mol Biomol Spectrosc 95:382–398CrossRefGoogle Scholar
  14. 14.
    Neary MC, Parkin G (2016) Polyhedron 116:189–196CrossRefGoogle Scholar
  15. 15.
    Golbedaghi R, Fausto R, Salehzadeh S, Tofani M, Safaraabadi S (2018) Inorg Chim Acta 480:27–32CrossRefGoogle Scholar
  16. 16.
    Abou-Hussein AAA, Linert W (2012) Spectrochim Acta A Mol Biomol Spectrosc 95:596–609CrossRefGoogle Scholar
  17. 17.
    Egekenze RN, Gultneh Y, Butcher R (2018) Inorg Chim Acta 478:232–242CrossRefGoogle Scholar
  18. 18.
    Carmona-Vargas CC, Aristizábal SL, Belalcázar MI, D’Vries RF, Chaur MN (2019) Inorg Chim Acta 487:275–280CrossRefGoogle Scholar
  19. 19.
    Ly HN, Brook DJR, Oliverio O (2011) Inorg Chim Acta 378:115–120CrossRefGoogle Scholar
  20. 20.
    Lions F, Dance IG, Lewis J (1967) J Chem Soc A Inorg Phys Theor.  https://doi.org/10.1039/J19670000565 Google Scholar
  21. 21.
    Vecchio-Sadus AM (1995) Transit Met Chem 20:38–45Google Scholar
  22. 22.
    Chaur MN, Collado D, Lehn J-M (2011) Chem Eur J 17:248–258CrossRefGoogle Scholar
  23. 23.
    Kosobokov MD, Xue T, Vicic DA (2018) Polyhedron 155:366–369CrossRefGoogle Scholar
  24. 24.
    Dunn JG, Edwards DA (1971) J Chem Soc A Inorg Phys Theor.  https://doi.org/10.1039/J19710000988 Google Scholar
  25. 25.
    Ndiaye-Gueye M, Dieng M, Thiam IE, Sow MM, Gueye-Sylla R, Barry AH, Gaye M, Retailleau P (2017) Rev Roum Chim 62:35–41Google Scholar
  26. 26.
    Ndiaye-Gueye M, Dieng M, Thiam EI, Lo D, Barry AH, Gaye M, Retailleau P (2017) South Afr J Chem 70:8–15Google Scholar
  27. 27.
    Gueye NDM, Moussa D, Thiam EI, Barry AH, Gaye M, Retailleau P (2017) Acta Crystallogr E 73:1121–1124CrossRefGoogle Scholar
  28. 28.
    Sarr M, Diop M, Thiam EI, Barry AH, Gaye M, Retailleau P (2018) Acta Crystallogr E 74:450–453CrossRefGoogle Scholar
  29. 29.
    CrysAlisPro 11713934b Rigaku Oxford diffraction 2017Google Scholar
  30. 30.
    Sheldrick GM (2015) Acta Crystallogr A 71:3–8CrossRefGoogle Scholar
  31. 31.
    Sheldrick GM (2015) Acta Crystallogr C 71:3–8CrossRefGoogle Scholar
  32. 32.
    Farrugia LJ (1997) J Appl Crystallogr 30:565CrossRefGoogle Scholar
  33. 33.
    Geary WJ (1971) Coord Chem Rev 7:81–122CrossRefGoogle Scholar
  34. 34.
    Chioma F, Ekennia AC, Ibeji CU, Okafor SN, Onwudiwe DC, Osowole AA, Ujam OT (2018) J Mol Struct 1163:455–464CrossRefGoogle Scholar
  35. 35.
    Puchoňová M, Matejová S, Jorík V, Šalitroš I, Švorc Ľ, Mazúr M, Moncoľ J, Valigura D (2018) Polyhedron 151:152–159CrossRefGoogle Scholar
  36. 36.
    Deacon GB (1980) Phillips. Coord Chem Rev 33:227–250CrossRefGoogle Scholar
  37. 37.
    Deacon GB, Huber F, Phillips RJ (1985) Inorg Chim Acta 104:41–45CrossRefGoogle Scholar
  38. 38.
    Sangeetha S, Murali M (2015) Inorg Chem Commun 59:46–49CrossRefGoogle Scholar
  39. 39.
    Pratihar JL, Mandal P, Brandão P, Mal D, Felix V (2018) Inorg Chim Acta 479:221–228CrossRefGoogle Scholar
  40. 40.
    Diouf O, Sall DG, Gaye ML, Sall AS (2007) Comptes Rendus Chim 10:473–481CrossRefGoogle Scholar
  41. 41.
    Sadhu MH, Kumar SB, Saini JK, Purani SS, Khanna TR (2017) Inorg Chim Acta 466:219–227CrossRefGoogle Scholar
  42. 42.
    Ha K (2010) Acta Crystallogr E 66:m262CrossRefGoogle Scholar
  43. 43.
    Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans.  https://doi.org/10.1039/DT9840001349 Google Scholar
  44. 44.
    Konno T, Tokuda K, Sakurai J, Okamoto K (2000) Bull Chem Soc Jpn 73:2767–2773CrossRefGoogle Scholar
  45. 45.
    Coropceanu EB, Croitor L, Siminel AV, Fonari MS (2014) Polyhedron 75:73–80CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity Cheikh Anta DiopDakarSenegal
  2. 2.Department of ChemistryUniversity de NouakchottNouakchottMauritanie
  3. 3.UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations