Synthesis and structures of two three-dimensional hybrid materials based on vanadium polyoxoanions and macrocyclic metal complexes

  • Jia-Qi Kuang
  • Jia-Qing Zhuang
  • Jing Zhou
  • Xiao-Ling Wang
  • Guang-Chuan Ou


The reactions of transition metal macrocyclic complexes [ML](ClO4)2 (L = 1,8-diethyl-1,3,6,8,10,13-hexaazacyclotetradecane, M=Ni, Cu) with NH4VO3 gave two coordination polymers, formulated as [NiL]3[VO3]6·0.5H2O (1) and [CuL]3[VO3]6·2H2O (2). Single-crystal X-ray diffraction analyses indicated that the central Ni(II)/Cu(II) atom achieves a distorted six-coordinate octahedral coordination geometry by the coordination of four nitrogen atoms from L, plus two oxygen atoms from [VO4] tetrahedra. Six [VO4] tetrahedra form a hexanuclear [V6O18]6− ring by sharing six μ2-oxygen atoms. The [NiL]2+ and [CuL]2+ moieties bridge the [V6O18]6− rings to form three-dimensional frameworks with one-dimensional hexagonal channels.



This work was financially supported by the NSFC (51772091).


  1. 1.
    Li X, Yang L, Qin C, Liu FH, Zhao L, Shao KZ, Su ZM (2015) RSC Adv 5:59093CrossRefGoogle Scholar
  2. 2.
    Chen H, Zhang YF, Yu ZB, Sun JL (2014) Dalton Trans 43:15283CrossRefGoogle Scholar
  3. 3.
    Wan HX, Wang CL, Zhang Y, Miao H, Zhou S, Zhou Y (2014) Inorg Chem 53:10498CrossRefGoogle Scholar
  4. 4.
    Shen JQ, Wu Q, Zhang Y, Zhang ZM, Li YG, Lu Y, Wang EB (2014) Chem Eur J 20:2840CrossRefGoogle Scholar
  5. 5.
    He XL, Liu YP, Gong KN, Han ZG, Zhai XL (2015) Inorg Chem 54:1215CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Shen JQ, Zheng LH, Zhang ZM, Li YX, Wang EB (2014) Cryst Growth Des 14:110CrossRefGoogle Scholar
  7. 7.
    Zhou J, Liu X, Hu FL, Chen R, Zou HH, Fu WS, Liang GM, Chen Y (2013) CrystEngComm 15:4593CrossRefGoogle Scholar
  8. 8.
    Zhang ZB, Xu Y, Zheng L, Zhu DR, Song Y (2011) CrystEngComm 13:2191CrossRefGoogle Scholar
  9. 9.
    Guo GL, Xu YQ, Cao J, Hu CW (2011) Chem Commun 43:9411CrossRefGoogle Scholar
  10. 10.
    Monakhov KY, Linnenberg O, Kozłowski P, van Leusen J, Besson C, Secker T, Ellern A, López X, Poblet JM, Kögerler P (2015) Chem Eur J 21:2387CrossRefGoogle Scholar
  11. 11.
    Joniakova D, Gyepes R, Rakovsky E, Schwendt PB, Zurkova L, Marek J, Micka Z (2006) Polyhedron 25:2491CrossRefGoogle Scholar
  12. 12.
    Ou GC, Jiang L, Feng XL, Lu TB (2009) Dalton Trans 1:71CrossRefGoogle Scholar
  13. 13.
    Ou GC, Yuan XY, Li ZZ (2012) Transit Met Chem 37:705CrossRefGoogle Scholar
  14. 14.
    Ou GC, Yuan XY, Li ZZ (2013) Chin J Struct Chem 32:375Google Scholar
  15. 15.
    Ou GC, Huang ZW, Pan ZY, Zhou DL, Li ZZ, Yuan XY (2014) Chin J Inorg Chem 30:419Google Scholar
  16. 16.
    Ou GC, Liao Y, Xiang YF, Yuan XY, Li ZZ (2017) Chin J Struct Chem 36:135Google Scholar
  17. 17.
    Ou GC, Yuan XY, Li ZZ, Li WY, Zeng F, Deng JH, Zhong DC (2016) Eur J Inorg Chem 21:3500CrossRefGoogle Scholar
  18. 18.
    Suh MP, Kang SG (1988) Inorg Chem 27:2544CrossRefGoogle Scholar
  19. 19.
    Sheldrick GM (1996) SADABS, program for empirical absorption correction of area detector data. University of Göttingen, GöttingenGoogle Scholar
  20. 20.
    Sheldrick GM (2008) Acta Cryst A64:112CrossRefGoogle Scholar
  21. 21.
    Brown ID, Altermatt D (1985) Acta Crystallogr B 41:244CrossRefGoogle Scholar
  22. 22.
    Spek AL (2003) J Appl Crystallogr 36:7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biology and ChemistryHunan University of Science and EngineeringYongzhouChina

Personalised recommendations