Advertisement

Transition Metal Chemistry

, Volume 44, Issue 2, pp 175–185 | Cite as

Synthesis, characterisation, and X-ray structures of zinc(II) complexes bearing camphor-based ethyleneamineimines as pre-catalysts for heterotactic-enriched polylactide from rac-lactide

  • Juhyun Cho
  • Min Kyung Chun
  • Saira Nayab
  • Jong Hwa JeongEmail author
Article
  • 32 Downloads

Abstract

A series of Zn(II) complexes bearing camphor-based ethyleneamine derivatives, [LnZnCl2] (Ln = [(E)-N1-ethyl-N2-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)ethane-1,2-diamine] (L1), [(E)-N1,N1-diethyl-N2-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)ethane-1,2-diamine] (L2), and [(E)-N-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)-2-(pyrrolidin-1-yl)ethanamine] (L3)), have been synthesised and characterised by X-ray crystallography. The isopropoxide derivatives [LnZn(OiPr)2] and [LnZnCl(OiPr)] (Ln = L1 − L3), generated in situ, effectively polymerised rac-lactide (rac-LA) to yield poly(lactide) (PLA) with high number-average molecular weights (Mn) and narrow polydispersity indices. Zn(II) initiators with less steric bulk at the amine moiety exhibited better catalytic activities; thus, the ring-opening polymerisation (ROP) activity of the catalytic system depended largely on the steric hindrance imposed by the substituents attached to the amine moiety of the ligand. All of the complexes mediated stereoselective ROP of rac-LA in a living manner to yield PLA with high heterotacticity (Pr up to 0.81).

Notes

Acknowledgements

This research was supported by Kyungpook National University, 2018.

References

  1. 1.
    Zhu Y, Romain C, Williams CK (2016) Nature 540:354CrossRefGoogle Scholar
  2. 2.
    Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835CrossRefGoogle Scholar
  3. 3.
    Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Express Polym Lett 9:435CrossRefGoogle Scholar
  4. 4.
    Chiellini E, Solaro R (1996) Adv Mater 8:305CrossRefGoogle Scholar
  5. 5.
    Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841CrossRefGoogle Scholar
  6. 6.
    Dubois P, Coulembier O, Raquez J-M (2009) Handbook of Ring-opening polymerisation. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. 7.
    Stanford MJ, Dove AP (2010) Chem Soc Rev 39:486CrossRefGoogle Scholar
  8. 8.
    Hamitou A, Ouhadi T, Jerome R, Teyssié P (1977) J Polym Sci: Polym Chem Ed 15:865Google Scholar
  9. 9.
    Kricheldorf HR, Mang T, Jonte JM (1984) Macromolecules 17:2173CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Gao A, Zhang Y, Xu Z, Yao W (2016) Polyhedron 112:27CrossRefGoogle Scholar
  11. 11.
    Routaray A, Nath N, Maharana T, Sutar AK (2017) Catal Sci Tech 7:1792CrossRefGoogle Scholar
  12. 12.
    Deana RK, Recklinga AM, Chen H, Dawe LN, Schneider CM, Kozak CM (2013) Dalton Trans 42:3504CrossRefGoogle Scholar
  13. 13.
    Lee EJ, Lee KM, Jang J, Kim E, Chung JS, Do Y, Yoon SC, Park SY (2014) J Mol Catal A: Chem 385:68CrossRefGoogle Scholar
  14. 14.
    Tsai C-Y, Du H-C, Chang J-C, Huang B-H, Ko B-T, Lin C-C (2014) RSC Adv 4:14527CrossRefGoogle Scholar
  15. 15.
    Liu Z, Gao W, Zhang J, Cui D, Wu Q, Mu Y (2010) Organometallics 29:5783CrossRefGoogle Scholar
  16. 16.
    Wang CH, Li CH, Lin CH, Liu YC, Ko BT (2011) Inorg Chem Commun 14:1456CrossRefGoogle Scholar
  17. 17.
    Wang CH, Li CY, Huang BH, Lin CC, Ko BT (2013) Dalton Trans 42:10875CrossRefGoogle Scholar
  18. 18.
    Jeong JH, An YH, Kang YK, Nguyen QT, Lee H, Novak BM (2008) Polyhedron 27:319CrossRefGoogle Scholar
  19. 19.
    Gao B, Duan R, Pang X, Li X, Qu Z, Shao H, Wang X, Chen X (2013) Dalton Trans 42:16334CrossRefGoogle Scholar
  20. 20.
    Singh B, Dhiman A (2015) RSC Adv 5:44666CrossRefGoogle Scholar
  21. 21.
    Najer A, Wu D, Nussbaumer MG, Schwertz G, Schwab A, Witschel MC, Schafer A, Diederich F, Rottmann M, Palivan CG, Beck H-P, Meier W (2016) Nanoscale 8:14858CrossRefGoogle Scholar
  22. 22.
    Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Chem Soc Rev 42:1147CrossRefGoogle Scholar
  23. 23.
    Huang P, Yang C, Liu J, Wang W, Guo S, Li J, Sun Y, Dong H, Deng L, Zhang J, Liu J, Dong A (2014) J Mater Chem B 2:4021CrossRefGoogle Scholar
  24. 24.
    Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A (2011) Biomacromol 12:523CrossRefGoogle Scholar
  25. 25.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Chem Rev 104:6147CrossRefGoogle Scholar
  26. 26.
    Wang H, Yang Y, Ma H (2016) Inorg Chem 55:7356CrossRefGoogle Scholar
  27. 27.
    Mantri S, Routaray A, Nath N, Sutar AK, Maharana T (2017) Polym Int 66:313CrossRefGoogle Scholar
  28. 28.
    Huang B-H, Tsai C-Y, Chen C-T, Ko B-T (2016) Dalton Trans 45:17557CrossRefGoogle Scholar
  29. 29.
    Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW (2001) J Am Chem Soc 123:3229CrossRefGoogle Scholar
  30. 30.
    Sun H, Ritch JS, Hayes PG (2011) Inorg Chem 50:8063CrossRefGoogle Scholar
  31. 31.
    Wheaton CA, Hayes PG (2010) Dalton Trans 39:3861CrossRefGoogle Scholar
  32. 32.
    Ireland BJ, Wheaton CA, Hayes PG (2010) Organometallics 29:1079CrossRefGoogle Scholar
  33. 33.
    Jensen TR, Breyfogle LE, Hillmyer MA, Tolman WB (2004) Chem Commun 2504Google Scholar
  34. 34.
    Kwon KS, Nayab S, Jeong JH (2015) Polyhedron 85:615CrossRefGoogle Scholar
  35. 35.
    Cushion MG, Mountford P (2011) Chem Commun 47:2276CrossRefGoogle Scholar
  36. 36.
    Liu J, Ma H (2014) Dalton Trans 43:9098CrossRefGoogle Scholar
  37. 37.
    Dos Santos Vieira I, Herres-Pawlis S (2012) Eur J Inorg Chem 2012:765CrossRefGoogle Scholar
  38. 38.
    Reinmuth M, Walter P, Enders M, Kaifer E, Himmel HJ (2011) Eur J Inorg Chem 2011:83CrossRefGoogle Scholar
  39. 39.
    Chisholm MH, Eilerts NW, Huffman JC, Iyer SS, Pacold M, Phomphrai K (2000) J Am Chem Soc 122:11845CrossRefGoogle Scholar
  40. 40.
    Kwon KS, Nayab S, Jeong JH (2017) Polyhedron 130:23CrossRefGoogle Scholar
  41. 41.
    Kwon KS, Nayab S, Lee H-I, Jeong JH (2017) Polyhedron 126:127CrossRefGoogle Scholar
  42. 42.
    Metz A, Heck J, Gohlke GM, Krocket K, Louren Y, Mekeown P, Hoffmann A, Jones MD, Herres-Pawlis S (2017) Inorganics 5:85CrossRefGoogle Scholar
  43. 43.
    Chelucci G (2006) Chem Soc Rev 35:1230CrossRefGoogle Scholar
  44. 44.
    Zell MT, Padden BE, Paterick AJ, Thakur KAM, Kean RT, Hillmyer MA, Munson EJ (2002) Macromolecules 35:7700CrossRefGoogle Scholar
  45. 45.
    Cheng M, Attygalle AB, Lobkovsky EB, Coates GW (1999) J Am Chem Soc 121:11583CrossRefGoogle Scholar
  46. 46.
    Sheldrick GM (2008) Acta Crystallogr A 64: 112Google Scholar
  47. 47.
    Sheldrick GM (2015) Acta Crystallogr. Sect. C71:3CrossRefGoogle Scholar
  48. 48.
    Borner J, Florke U, Gloge T, Bannenberg T, Tamm M, Jones MD, Doring A, Kuckling D, Herres-Pawlis S (2010) J Mol Catal A: Chem 316:139CrossRefGoogle Scholar
  49. 49.
    Borner J, Florke U, Huber K, Doring A, Kuckling D, Herres-Pawli S (2009) Chem Eur J 15:2362CrossRefGoogle Scholar
  50. 50.
    Khalaji AD, Grivani G, Akerdi SJ, Evans HS, Das D (2012) J Chem Crystallogr 42:83CrossRefGoogle Scholar
  51. 51.
    Khalaji AD, Weil M, Grivani G, Akerdi SJ (2010) Monatsh Chem 141:539CrossRefGoogle Scholar
  52. 52.
    Mimoun H, de-Saint Laumer JY, Giannini L, Scopelliti R, Floriani C (1999) J Am Chem Soc 121: 6158Google Scholar
  53. 53.
    Johansson A, Hakansson M (2004) Acta Crystallogr E 60: M955Google Scholar
  54. 54.
    Nayab S, Jeong JH (2016) Inorg Chem Commun 65:35CrossRefGoogle Scholar
  55. 55.
    Kwon KS, Nayab S, Lee H, Jeong JH (2014) Polyhedron 77:32CrossRefGoogle Scholar
  56. 56.
    Maiti P, Khan A, Chattopadhyay T, Das S, Manna K, Bose D, Dey S, Zangrando E, Das D (2011) J Coord Chem 64:3817CrossRefGoogle Scholar
  57. 57.
    Normand M, Dorcet V, Kirillov E, Carpentie J (2013) Organometallics 32:1694CrossRefGoogle Scholar
  58. 58.
    Sava MM, Schappacher M, Soum A (2002) Macromol Chem Phys 203:889CrossRefGoogle Scholar
  59. 59.
    Herber U, Hegner K, Wolters D, Siris V, Wrobel K, Hoffmann A, Lochenie C, Weber B, Kuckling D, Herres-Pawlis S (2016) Eur J Inorg Chem 2016:4723CrossRefGoogle Scholar
  60. 60.
    Nayab S, Lee H, Jeong JH (2011) Polyhedron 30:405CrossRefGoogle Scholar
  61. 61.
    Nayab S, Lee H, Jeong JH (2012) Polyhedron 43:55CrossRefGoogle Scholar
  62. 62.
    Nayab S, Jeong JH (2013) Polyhedron 59:138CrossRefGoogle Scholar
  63. 63.
    Kricheldorf HR, Lee SR, Bush S (1996) Macromolecules 29:1375CrossRefGoogle Scholar
  64. 64.
    Ajellal N, Lyubov DM, Sinenkov MA, Fukin GK, Cherkasov AV, Thomas CM, Carpentier JF, Trifonov AA (2008) Chem Eur J 14:5440CrossRefGoogle Scholar
  65. 65.
    Hormnirun P, Marshall EL, Gibson VC, Pugh RI, White AJP (2006) Proc Natl Acad Sci 103:15343CrossRefGoogle Scholar
  66. 66.
    Darensbourg DJ, Karroonnirun O (2010) Inorg Chem 49:2360CrossRefGoogle Scholar
  67. 67.
    Mantri S, Pradhan HC, Maharana T, Sutar AK (2017) Int J Chem Eng Appl 8:122Google Scholar
  68. 68.
    Mantr S, Routaray A, Nath N, Sutar AK, Maharana T (2016) Polym Int 66:313CrossRefGoogle Scholar
  69. 69.
    Han Y, Feng Q, Zhang Y, Zhang Y, Yao W (2017) Polyhedron 121:206CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Green-Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of ChemistryShaheed Benazir Bhutto University, SheringalSheringal Dir (U)Islamic Republic of Pakistan

Personalised recommendations