Advertisement

Transition Metal Chemistry

, Volume 44, Issue 2, pp 167–173 | Cite as

Efficient aerobic photooxygenation of aldehydes to carboxylic acids using cobalt(II) phthalocyanine sulfonate as a photosensitizer in organic-water biphasic media

  • Mahdi HajimohammadiEmail author
  • Zahra Ahmadi Khamesi
  • Parisa Nosrati
Article
  • 56 Downloads

Abstract

The aerobic oxidation of a variety of aromatic aldehydes to the corresponding carboxylic acids by molecular oxygen in the presence of 4-carboxyl tetraphenylporphyrin (H2TCPP), methylene blue (MB), cobalt(II) phthalocyanine sulfonate (CoPcS) and FeTCPPCl as water-soluble photosensitizers in organic-water biphasic media at room temperature under either visible light or sunlight is described. The products were obtained with 25–100% conversion and 100% selectivity. This method has a wide range of applicabilities, has a straightforward workup procedure, is chemoselective and proceeds under mild reaction conditions. The resulting products were obtained in good yields in reasonable times.

Notes

Acknowledgements

Financial support of this work by Iran National Science Foundation (INSF) no. 96005616, and Research Council of Kharazmi University are gratefully acknowledged.

References

  1. 1.
    Hollingworth GJ, Katritzky AR, Meth-Cohn O, Rees CW, Pattenden G (1995) In comprehensive organic functional group transformations. Elsevier Sci, OxfordGoogle Scholar
  2. 2.
    Hudlicky M (1990) Oxidations in organic chemistry. American Chemical Society, Washington DCGoogle Scholar
  3. 3.
    Larock RC (1999) Comprehensive organic transformations: a guide to functional group preparations, 2nd edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Smith MB, March J (2001) March’s advanced organic chemistry: reactions mechanisms and structure, 5th edn. Wiley, New YorkGoogle Scholar
  5. 5.
    Bowden K, Heilbron IM, Jones ERH, Weedon BCL (1946) J Chem Soc.  https://doi.org/10.1039/JR9460000039 Google Scholar
  6. 6.
    Heilbron I, Jones E, Sondheimer F (1949) J Chem Soc.  https://doi.org/10.1039/JR9490000604 Google Scholar
  7. 7.
    Bladon P, Fabian JM, Henbest H, Koch H, Wood GW (1951) J Chem Soc. pp 2402–2411Google Scholar
  8. 8.
    Curtis R, Heilbron I, Jones E, Woods GF (1953) J Chem Soc.  https://doi.org/10.1039/JR9530000457 Google Scholar
  9. 9.
    Bowers A, Halsall T, Jones E, Lemin A (1953) J Chem Soc.  https://doi.org/10.1039/JR9530002548 Google Scholar
  10. 10.
    Djerassi C, Engle R, Bowers A (1956) J Org Chem 21:1547–1549CrossRefGoogle Scholar
  11. 11.
    Benjamin RT, Sivakumar M, Hollist GO, Borhan B (2003) Org Lett 5:1031–1034CrossRefGoogle Scholar
  12. 12.
    Nwaukwa SO, Keehn PM (1982) Tetrahedron Lett 23:3131–3134CrossRefGoogle Scholar
  13. 13.
    Ganem B, Heggs RP, Biloski AJ, Schwartz DR (1980) Tetrahedron Lett 21:685–688CrossRefGoogle Scholar
  14. 14.
    Joseph JK, Jain SL, Sain B (2007) Catal Commun 8:83–87CrossRefGoogle Scholar
  15. 15.
    Lim M, Yoon CM, An G, Rhee H (2007) Tetrahedron Lett 48:3835–3839CrossRefGoogle Scholar
  16. 16.
    Sloboda-Rozner D, Neimann K, Neumann R (2007) J Mol Catal A Chem 262:109–113CrossRefGoogle Scholar
  17. 17.
    Mukhopadhyay C, Datta A (2008) Catal Commun 9:2588–2592CrossRefGoogle Scholar
  18. 18.
    Uyanik M, Ishihara K (2009) Chem Commun.  https://doi.org/10.1039/B823399C Google Scholar
  19. 19.
    Han A-R, Jeong YJ, Kang Y, Lee JY, Seo MS, Nam W (2008) Chem Commun.  https://doi.org/10.1039/B716558G Google Scholar
  20. 20.
    Ellis PE Jr, Lyons JE (1990) Coord Chem Rev 105:181–193CrossRefGoogle Scholar
  21. 21.
    Haranaka M, Hara A, Ando W, Akasaka T (2009) Tetrahedron Lett 50:3585–3587CrossRefGoogle Scholar
  22. 22.
    Khavasi HR, Safari N (2004) J Mol Catal A 220:127–132CrossRefGoogle Scholar
  23. 23.
    DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 233:351–371CrossRefGoogle Scholar
  24. 24.
    Greer A (2006) Acc Chem Res 39:797–804CrossRefGoogle Scholar
  25. 25.
    Redmond RW, Gamlin JN (1999) Photochem Photobiol 70:391–475CrossRefGoogle Scholar
  26. 26.
    Bonnett R (1995) Chem Soc Rev 24:19–33CrossRefGoogle Scholar
  27. 27.
    Weber L, Hommel R, Behling J, Haufe G, Hennig H (1994) J Am Chem Soc 116:2400–2408CrossRefGoogle Scholar
  28. 28.
    Pandey R, Zheng G (2000) The porphyrin handbook. In: Kadish KM, Smith KM, Guilard R (eds), vol 6. Academic Press, Boston, pp 157–230Google Scholar
  29. 29.
    Pushpan S, Venkatraman S, Anand V, Sankar J, Parmeswaran D, Ganesan S, Chandrashekar T (2002) Curr Med Chem Anti-Cancer Agents 2:187–207CrossRefGoogle Scholar
  30. 30.
    Nyman ES, Hynninen PH (2004) J Photochem Photobiol B 73(1–2):1–28CrossRefGoogle Scholar
  31. 31.
    Sorokin AB (2013) Chem Rev 113:8152–8191CrossRefGoogle Scholar
  32. 32.
    Vashurin A, Maizlish V, Kuzmina I, Znoyko S, Morozova A, Razumov M, Koifman O (2017) J Porphyr Phthalocyanines 21:37–47CrossRefGoogle Scholar
  33. 33.
    Ebrahimian Pirbazari A (2015) Procedia Mater Sci 11:622–627CrossRefGoogle Scholar
  34. 34.
    Wang D, Guo R, Wang S, Liu F, Wang Y, Zhao C (2016) Desalin Water Treat 57:25226–25234CrossRefGoogle Scholar
  35. 35.
    Hajimohammadi M, Bahadoran F, Davarani SSH, Safari N (2010) React Kinet Mech Cat 99:243–250Google Scholar
  36. 36.
    Hajimohammadi M, Safari N, Mofakham H, Deyhimi F (2011) Green Chem 13:991–997CrossRefGoogle Scholar
  37. 37.
    Kalajahi SSM, Hajimohammadi M, Safari N (2014) React Kinet Mech Cat 113:629–640CrossRefGoogle Scholar
  38. 38.
    Hajimohammadi M, Ghasemi H (2016) J Porphyr Phthalocyanines 20:670–676CrossRefGoogle Scholar
  39. 39.
    Adler AD, Longo FR, Shergalis W (1964) J Am Chem Soc 86:3145–3149CrossRefGoogle Scholar
  40. 40.
    Yan GP, Bischa D, Bottle SE (2007) Free Rad Biol Med 43:111–116CrossRefGoogle Scholar
  41. 41.
    Kulinich VP, Shaposhnikov GP, Badaukaite RA (2010) Macroheterocycles 3:23–29CrossRefGoogle Scholar
  42. 42.
    Knör G (2001) Chem Bio Chem 2:593–596CrossRefGoogle Scholar
  43. 43.
    Staicu A, Pascu A, Nuta A, Sorescu A, Raditoiu V, Pascu ML (2013) Rom Rep Phys 65:1032–1051Google Scholar
  44. 44.
    Sawyer DT (1991) Oxygen chemistry. Oxford University Press, OxfordGoogle Scholar
  45. 45.
    Min DB, Boff JM (2002) Compr Rev Food Sci Food Saf 1:58–72CrossRefGoogle Scholar
  46. 46.
    Aubry JM, Pierlot C, Rigaudy J, Schmidt R (2003) Acc Chem Res 36:668–675CrossRefGoogle Scholar
  47. 47.
    Nowakowska M (1978) Macromol Chem Phys 179:2959–2967CrossRefGoogle Scholar
  48. 48.
    Nowakowska M (1980) Macromol Chem Phys 181:1021–1027CrossRefGoogle Scholar
  49. 49.
    Olea AF, Wilkinson F (1995) J Phys Chem 99:4518–4524CrossRefGoogle Scholar
  50. 50.
    Harbour JR, Issler SL (1982) J Am Chem Soc 104:903–905CrossRefGoogle Scholar
  51. 51.
    Chen Y, Xu S, Li L, Zhang M, Shen J, Shen T (2001) Dyes Pigments 51:63–69CrossRefGoogle Scholar
  52. 52.
    Bressan M, Morvillo A (1989) Inorg Chem 28:950CrossRefGoogle Scholar
  53. 53.
    Toffoli DJ, Gomes L, Junior NDV, Courrol LC (2008) In: AIP conference proceedings, AIP, vol 992. p 1207Google Scholar
  54. 54.
    Bernini R, Coratti A, Provenzano G, Fabrizi G, Tofani D (2005) Tetrahedron Lett 61:1821–1825CrossRefGoogle Scholar
  55. 55.
    Wu XA, Ying P, Liu JY, Shen HS, Chen Y, He L (2009) Synth Commun 39:3459–3470CrossRefGoogle Scholar
  56. 56.
    Nield E, Stephens R, Tatlow JC (1959) J Chem Soc.  https://doi.org/10.1039/JR9590000166 Google Scholar
  57. 57.
    Donleavy JJ (1936) J Am Chem Soc 58:1004–1005CrossRefGoogle Scholar
  58. 58.
    Ueda I (1975) Bull Chem Soc Jpn 48:2306–2309CrossRefGoogle Scholar
  59. 59.
    Taha N, Chidambaram M, Dakka J, Sasson Y (2009) Catal Lett 129:358–362CrossRefGoogle Scholar
  60. 60.
    Ferenc WI, Walkow-Dziewulska AG (2001) J Serb Chem Soc 66:543–554CrossRefGoogle Scholar
  61. 61.
    Iqbal N, Choi S, You Y, Cho EJ (2013) Tetrahedron Lett 54:6222–6225CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryKharazmi UniversityTehranIran

Personalised recommendations