Transition Metal Chemistry

, Volume 44, Issue 2, pp 145–151 | Cite as

Homogeneous oxidation reactions catalysed by in situ-generated triazolylidene copper(I) complexes

  • Siyabonga G. Mncube
  • Muhammad D. BalaEmail author


Four new Cu complexes bearing triazolylidene ligands 1-(R)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5-yl: R = phenyl (2a), mesitylenyl (2b), propyl (2c), hexyl (2d) (NHC) were synthesised in high yields. Characterisation by spectroscopic and analytical methods confirmed the molecular composition of the complexes as NHC–Cu-I. The complexes 2(a–d) bearing NHC wingtip variations were tested as in situ-generated catalysts for homogeneous oxidation catalysis with H2O2 as oxidant. The in situ technique was adopted for ease of application and to circumvent the poor stability of the complexes in solution. The results showed that the NHC–Cu-I complexes are capable of initiating oxidation reactions, yielding ketones/aldehydes as dominant products for the oxidation of alkanes under optimised reaction conditions, with complexes bearing aliphatic N-substituents showing the highest catalytic activities. Oxidation of toluene with 2c resulted in a mixture of benzaldehyde and benzyl alcohol as the main products. Also, 2c catalysed the oxidation of n-octane, yielding a mixture of mainly C-8 oxidation products with over 75% selectivity for the isomeric octanones. Analysis of regioselectivity indicated that the internal \({\text{C}}_{{sp^{3} }}\)–H bonds of n-octane [especially C(2)] are more reactive than the terminal ones.

Graphical abstract



This project is generously supported by c*change PAR program, the National Research Foundation and the University of KwaZulu-Natal for which we are grateful (Grant No. PAR08).

Supplementary material

11243_2018_278_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1493 kb)


  1. 1.
    Peris E, Crabtree RH (2003) C R Chim 6:33–37CrossRefGoogle Scholar
  2. 2.
    Periana RA, Bhalla G, Tenn WJ III, Young KJH, Yang Liu X, Mironov O, Jones CJ, Ziatdinov VR (2004) J Mol Catal A Chem 220:7–25CrossRefGoogle Scholar
  3. 3.
    Díez-González S, Marion N, Nolan SP (2009) Chem Rev 109:3612–3676CrossRefGoogle Scholar
  4. 4.
    Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 510:485–496CrossRefGoogle Scholar
  5. 5.
    Arduengo AJ III, Dias HVR, Harlow RL, Kline M (1992) J Am Chem Soc 114:5530–5534CrossRefGoogle Scholar
  6. 6.
    Fraser PK, Woodward S (2001) Tetrahedron Lett 42:2747–2749CrossRefGoogle Scholar
  7. 7.
    Egbert JD, Cazin CSJ, Nolan SP (2013) Catal Sci Technol 3:912–926CrossRefGoogle Scholar
  8. 8.
    Gao F, McGrath KP, Lee Y, Hoveyda AH (2010) J Am Chem Soc 132:14315–14320CrossRefGoogle Scholar
  9. 9.
    Guzman-Martinez A, Hoveyda AH (2010) J Am Chem Soc 132:10634–10637CrossRefGoogle Scholar
  10. 10.
    Shintani R, Takatsu K, Takeda M, Hayashi T (2011) Angew Chem Int Ed 50:8656–8659CrossRefGoogle Scholar
  11. 11.
    Chun J, Lee HS, Jung G, Lee SW, Kim HJ, Son SU (2010) Organometallics 29:1518–1521CrossRefGoogle Scholar
  12. 12.
    Munz D, Strassner T (2015) Inorg Chem 54:5043–5052CrossRefGoogle Scholar
  13. 13.
    Astakhov AV, Khazipov OV, Degtyareva ES, Khrustalev VN, Chernyshev VM, Ananikov VP (2015) Organometallics 34:5759–5766CrossRefGoogle Scholar
  14. 14.
    Sobkowiak A, Qui A, Liu X, Llobet A, Sawyer DT (1993) J Am Chem Soc 115:609–614CrossRefGoogle Scholar
  15. 15.
    Barton DHR, Doller D, Geletii YV (1991) Mendeleev Commun 1:115–116CrossRefGoogle Scholar
  16. 16.
    Kirillov AM, Kopylovich MN, Kirillova MV, Karabach EY, Haukka M, da Silva MFCG, Pombeiro AJL (2006) Adv Synth Catal 348:159–174CrossRefGoogle Scholar
  17. 17.
    Garcia-Bosch I, Siegler MA (2016) Angew Chem 128:13065–13068CrossRefGoogle Scholar
  18. 18.
    Saravanamurugan S, Palanichamy M, Murugesan V (2004) Appl Catal A 273:143–149CrossRefGoogle Scholar
  19. 19.
    Mac Leod TCO, Kirillova MV, Pombeiro AJL, Schiavon MA, Assis MD (2010) Appl Catal A Gen 372:191–198CrossRefGoogle Scholar
  20. 20.
    Huang G, Luo J, Cai C, Guo Y, Luo G (2008) Catal Commun 9:1882–1885CrossRefGoogle Scholar
  21. 21.
    Mncube SG, Bala MD (2016) J Mol Liq 215:396–401CrossRefGoogle Scholar
  22. 22.
    Soobramoney L, Bala MD, Friedrich HB (2014) Dalton Trans 43:15968–15978CrossRefGoogle Scholar
  23. 23.
    Ramakrishna D, Bhat BR (2011) Inorg Chem Commun 14:690–693CrossRefGoogle Scholar
  24. 24.
    Zhu Q, Lian Y, Thyagarajan S, Rokita SE, Karlin KD, Blough NV (2008) J Am Chem Soc 130:6304–6305CrossRefGoogle Scholar
  25. 25.
    Fernandes RR, Lasri J, Guedes da Silva MFC, da Silva JAL, Fraústo da Silva JJR, Pombeiro AJL (2011) Appl Catal A 402:110–120CrossRefGoogle Scholar
  26. 26.
    Figiel PJ, Kirillov AM, Karabach YY, Kopylovich MN, Pombeiro AJL (2009) J Mol Catal A Chem 305:178–182CrossRefGoogle Scholar
  27. 27.
    Kirillov AM, Kirillova MV, Shul’pina LS, Figiel PJ, Gruenwald KR, Guedes da Silva MFC, Haukka M, Pombeiro AJL, Shul’pin GB (2011) J Mol Catal A Chem 350:26–34CrossRefGoogle Scholar
  28. 28.
    Nasani R, Saha M, Mobin SM, Martins LMDRS, Pombeiro AJL, Kirillovc AM, Mukhopadhyay S (2014) Dalton Trans 43:9944–9954CrossRefGoogle Scholar
  29. 29.
    Kozlov YN, Nizova GV, Shul’pin GB (2005) J Mol Catal A Chem 227:247–253CrossRefGoogle Scholar
  30. 30.
    Shul’pin GB, Drago RS, Gonzalez M (1996) Rus Chem Bull 45:2386–2388CrossRefGoogle Scholar
  31. 31.
    Ciesienski KL, Haas KL, Dickens MG, Tesema YT, Franz KJ (2008) J Am Chem Soc 130:12246–12247CrossRefGoogle Scholar
  32. 32.
    Yacob Z, Shah J, Leistner J, Liebscher J (2008) Synlett 15:2342–2344Google Scholar
  33. 33.
    Li P, Wang L (2007) Lett Org Chem 4:23–26CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations