Transition Metal Chemistry

, Volume 44, Issue 2, pp 115–123 | Cite as

Hydrogen-bonded and π-stacked nickel(II) thiosemicarbazone complexes: Synthesis, spectral and structural studies

  • Şükriye Güveli
  • Namık Özdemir
  • Tülay Bal-DemirciEmail author
  • Mustafa Serkan Soylu
  • Bahri Ülküseven


Mixed ligand Ni(II) complexes were synthesized from triphenylphosphine and S-methyl- or S-ethyl-isothiosemicarbazone ligands derived from 3-bromo-5-chloro-2-hydroxy-benzaldehyde. The complexes were characterized by physicochemical and spectroscopic methods. In addition, their molecular structures were determined by single-crystal X-ray diffraction. In both complexes, the Ni atom has a near square-planar geometry, being coordinated by the phenolato oxygen, azomethine nitrogen and amine nitrogen atoms of the thiosemicarbazone ligands, together with the phosphorus atom of the triphenylphosphine. The S-methyl complex includes an additional free thiosemicarbazone ligand in the asymmetric unit. X-ray analysis shows that O–H···N, N–H···N, C–H···N and C–H···O-type hydrogen bonds and ππ stacking interactions are responsible for stabilizing the crystal structures.



This work was supported by the Scientific Research Projects Coordination Unit of İstanbul University (Project Number: BYP-2017-21222).


  1. 1.
    Campbell MJM (1975) Transition metal complexes of thiosemicarbazide and thiosemicarbazones. Coord Chem Rev 15:279–319CrossRefGoogle Scholar
  2. 2.
    Dilworth JR, Hueting R (2012) Metal complexes of thiosemicarbazones for imaging and therapy. Inorg Chim Acta 389:3–15CrossRefGoogle Scholar
  3. 3.
    Lobana TS, Sharma R, Bawa G, Khanna S (2009) Bonding and structure trends of thiosemicarbazone derivatives of metals—an overview. Coord Chem Rev 253:977–1055CrossRefGoogle Scholar
  4. 4.
    Ramachandran E, Raja DS, Mike JL, Wagner TR, Zeller M, Natarajan K (2012) Evaluation on the role of terminal N-substitution in 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the biological properties of new water-soluble nickel(ii) complexes. RSC Adv 2:8515–8525CrossRefGoogle Scholar
  5. 5.
    Güveli Ş, Koca A, Özdemir N, Bal-Demirci T, Ülküseven B (2014) Electrochemistry and structural properties of new mixed ligand nickel(II) complexes based on thiosemicarbazone. New J Chem 38:5582–5589CrossRefGoogle Scholar
  6. 6.
    Bal-Demirci T, Akkurt M, Yalçın ŞP, Büyükgüngör O (2010) Synthesis, spectroscopic and crystallographic characterization of the cobalt (III) ternary mixed-ligand complexes of N (4)-allyl/methyl thiosemicarbazones, N,N,N′,N′-tetramethylethylenediamine and azide. Transit Met Chem 35:95–102CrossRefGoogle Scholar
  7. 7.
    da Silva AC, dos Santos TAR, da Silva IVB, de Oliveira MVG, Moreira DRM, Leite ACL, Pereira VRA (2017) Aryl thiosemicarbazones: in vitro and immunomodulatory activities against L. Amazonensis. Exp Parasitol 177:57–65CrossRefGoogle Scholar
  8. 8.
    Blower PJ, Castle TC, Cowley AR, Dilworth JR, Donnelly PS, Labisbal E, Sowrey FE, Teat SJ, Went MJ (2003) Structural trends in copper(II) bis(thiosemicarbazone) radiopharmaceuticals. Dalton Trans 23:4416–4425CrossRefGoogle Scholar
  9. 9.
    Bremer PT, Pellett S, Carolan JP, Tepp WH, Eubanks LM, Allen KM, Johnson EA, Janda KD (2017) Metal ions effectively ablate the action of botulinum neurotoxin A. J Am Chem Soc 139(21):7264–7272CrossRefGoogle Scholar
  10. 10.
    Kumar D, Kumar NM, Noel B, Shah K (2012) A series of 2-arylamino-5-(indolyl)-1,3,4-thiadiazoles as potent cytotoxic agents. Eur J Med Chem 55:432–438CrossRefGoogle Scholar
  11. 11.
    Brodowska K, Correia I, Garribba E, Marques F, Klewicka E, Chruscińska EL, Pessoa JC, Dzeikala A, Chrusciński L (2016) Coordination ability and biological activity of a naringenin thiosemicarbazone. J Inorg Biochem 165:36–48CrossRefGoogle Scholar
  12. 12.
    Garoufis A, Hadjikakou SK, Hadjiliadis N (2009) Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord Chem Rev 253:1384–1397CrossRefGoogle Scholar
  13. 13.
    Bal-Demirci T, Şahin M, Kondakçı E, Özyürek M, Ülküseven B, Apak R (2015) Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone. Spectrochim Acta Part A 138:866–872CrossRefGoogle Scholar
  14. 14.
    Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192CrossRefGoogle Scholar
  15. 15.
    Bal-Demirci T, Congur G, Erdem A, Erdem-Kuruca S, Özdemir N, Akgün-Dar K, Varol B, Ülküseven B (2015) Iron (III) and nickel (II) complexes as potential anticancer agents: synthesis, physicochemical and structural properties, cytotoxic activity and DNA interactions. New J Chem 39:5643–5653CrossRefGoogle Scholar
  16. 16.
    Nocentini G (1996) Ribonucleotide reductase inhibitors: new strategies for cancer chemotherapy. Crit Rev Oncol Hematol 22:89–126CrossRefGoogle Scholar
  17. 17.
    Yanardag R, Demirci TB, Ülküseven B, Bolkent S, Tunali S, Bolkent S (2009) Synthesis, characterization and antidiabetic properties of N1-2, 4-dihydroxybenzylidene-N4-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium (IV). Eur J Med Chem 44:818–826CrossRefGoogle Scholar
  18. 18.
    Prabhu RN, Ramesh R (2012) Catalytic application of dinuclear palladium(II) bis(thiosemicarbazone) complex in the Mizoroki-Heck reaction. Tetrahedron Lett 53:5961–5965CrossRefGoogle Scholar
  19. 19.
    Güveli Ş, Bal-Demirci T, Ülküseven B, Özdemir N (2016) Supramolecular nickel complex based on thiosemicarbazone. Synthesis, transfer hydrogenation and unexpected thermal behavior. Polyhedron 110:188–196CrossRefGoogle Scholar
  20. 20.
    Moradi-Shoeili Z, Zare M (2018) The effect of substituents on catalytic performance of bis-thiosemicarbazone Mo(VI) complexes: synthesis and spectroscopic, electrochemical, and functional properties. Kinet Catal 59:203–210. CrossRefGoogle Scholar
  21. 21.
    Igov RP, Jaredić MD, Pecev TG (1979) A new catalytic reaction for determination, of microamounts of iodide. Microchim Acta 2:171–179CrossRefGoogle Scholar
  22. 22.
    Rogers P, Hailey PA, Johnson GA, Dight VA, Read C, Shingler A, Savage P, Roche T, Mondry J (2000) A comprehensive and flexible approach to the automated- dissolution testing of pharmaceutical drug products incorporating direct UV–vis fiber-optic analysis, on-line fluorescence analysis, and off-line storage options. Lab Robot Autom 12:12–22CrossRefGoogle Scholar
  23. 23.
    Li Y, Chai Y, Yuan R, Liang W, Zhang L, Ye G (2008) Aluminium(III)-selective electrode based on a newly synthesized glyoxal bis-thiosemicarbazone Schiff base. J Anal Chem 63:1090–1093CrossRefGoogle Scholar
  24. 24.
    Rassaei L, Olthuis W, Tsujimura S, Sudhölter EJR, van den Berg A (2014) Lactate biosensors: current status and Outlook. Anal Bioanal Chem 406:123–137CrossRefGoogle Scholar
  25. 25.
    Tang L, Huang Z, Zheng Z, Zhong K, Bian Y (2016) A new thiosemicarbazone-based fluorescence BTurn-on sensor for Zn2+ recognition with a large stokes shift and its application in live cell imaging. J Fluoresc 26:1535–1540CrossRefGoogle Scholar
  26. 26.
    Park H, Chang SK (2015) Selective colorimetric and ratiometric signaling of Cu2 + ions by thiosemicarbazone-appended 3-hydroxynaphthalimide. Sens Actuators B Chem 220:376–380CrossRefGoogle Scholar
  27. 27.
    Kumar SLA, Kumar MS, Sreeja PB, Sreekanth A (2013) Novel heterocyclic thiosemicarbazones derivatives as colorimetric and “turn on” fluorescent sensors for fluoride anion sensing employing hydrogen bonding. Spec Chim Acta A 113:123–129CrossRefGoogle Scholar
  28. 28.
    Casas JS, García-Tasende MS, Sordo J (2000) Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord Chem Rev 209:197–261CrossRefGoogle Scholar
  29. 29.
    Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem 7:249–259CrossRefGoogle Scholar
  30. 30.
    West DX, Padhye SB, Sonawane PB (1991) Structural and physical correlations in the biological properties of transition metal heterocyclic thiosemicarbazone and S-alkyldithiocarbazate complexes. In: Complex chemistry: structure and bonding, vol 76. Springer, BerlinGoogle Scholar
  31. 31.
    Dömötör O, May NV, Pelivan K, Kiss T, Keppler BK, Kowol CR, Enyedy ÉA (2018) A comparative study of α-N-pyridyl thiosemicarbazones: spectroscopic properties, solution stability and copper(II) complexation. Inorg Chim Acta 472:264–275CrossRefGoogle Scholar
  32. 32.
    Moorthy NSHN, Cerqueira NMFSA, Ramos MJ, Fernandes PA (2013) Aryl-and heteroaryl-thiosemicarbazone derivatives and their metal complexes: a pharmacological template. Recent Pat Anti-Cancer Drug Discov 8:168–182CrossRefGoogle Scholar
  33. 33.
    Quiroga AG, Ranninger CN (2004) Contribution to the SAR field of metallated and coordination complexes: Studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord Chem Rev 248:119–133CrossRefGoogle Scholar
  34. 34.
    Agilent (2011) CrysAlis PRO. Agilent Technologies Ltd, YarntonGoogle Scholar
  35. 35.
    Sheldrick GM (2015) Acta Cryst A 71:3–8CrossRefGoogle Scholar
  36. 36.
    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8CrossRefGoogle Scholar
  37. 37.
    Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Cryst 45:849–854CrossRefGoogle Scholar
  38. 38.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Cryst 39:453–457CrossRefGoogle Scholar
  39. 39.
    Yang L, Powell DR, Houser RP (2007) Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. Dalton Trans 9:955–964CrossRefGoogle Scholar
  40. 40.
    Güveli Ş, Bal-Demirci T, Özdemir N, Ülküseven B (2009) Nickel(II) complexes of ONS and ONN chelating thiosemicarbazones with triphenylphosphine co-ligands. Transit Met Chem 34:383–388CrossRefGoogle Scholar
  41. 41.
    Güveli Ş, Ülküseven B (2011) Nickel(II)–triphenylphosphine complexes of ONS and ONN chelating 2-hydroxyacetophenone thiosemicarbazones. Polyhedron 30:1385–1388CrossRefGoogle Scholar
  42. 42.
    Kalaivani P, Prabhakaran R, Dallemer F, Natarajan K (2014) Photophysical properties and in vitro cytotoxicity studies of new Ru(II) carbonyl complexes and mixed geometrical Ru(II)–Ni(II) complex in HS-DNA/BSA protein and human lung (A549) and liver (HepG2) cells. RSC Adv 4:51850–51864CrossRefGoogle Scholar
  43. 43.
    Güveli Ş, Çınar SA, Karahan Ö, Aviyente V, Ülküseven B (2016) Nickel(II)–PPh3 complexes of S, N-substituted thiosemicarbazones—structure, DFT study, and catalytic efficiency. Eur J Inorg Chem 4:538–544CrossRefGoogle Scholar
  44. 44.
    Güveli Ş, Özdemir N, Ülküseven B, Bal-Demirci T (2016) Divalent nickel complexes of thiosemicarbazone based on 5-bromosalicylaldehyde and triphenylphosphine: experimental and theoretical characterization. Polyhedron 113:16–24CrossRefGoogle Scholar
  45. 45.
    Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed Engl 34:1555–1573CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Şükriye Güveli
    • 1
  • Namık Özdemir
    • 2
  • Tülay Bal-Demirci
    • 1
    Email author
  • Mustafa Serkan Soylu
    • 3
  • Bahri Ülküseven
    • 1
  1. 1.Department of Chemistry, Engineering FacultyIstanbul University-CerrahpaşaAvcılar, IstanbulTurkey
  2. 2.Department of Mathematics and Science Education, Faculty of EducationOndokuz Mayıs UniversitySamsunTurkey
  3. 3.Department of Physics, Faculty of Arts and SciencesGiresun UniversityGiresunTurkey

Personalised recommendations