Transition Metal Chemistry

, Volume 43, Issue 8, pp 673–681 | Cite as

Crystal structure, luminescent sensing and photocatalytic activity of a multifunctional hydrazone-based zinc(II) coordination polymer

  • Yu Wu
  • Zhangjie Gu
  • Wei Luo
  • Lei Wu
  • Yulong Li
  • Bin Xie
  • Like Zou


A Zn(II)-based coordination polymer [Zn3(L)2(dpp)2]n (1) has been solvothermally constructed from a combination of a multifunctional Schiff base 3,5-dibromosalicylaldehyde salicylhydrazone (H2L) and 1,3-di(4-pyridyl)propane (dpp). The photoluminescence properties of the complex have been exploited to use 1 as a dual detection probe for the selective sensing of Cu2+ and 2,4,6-trinitrotoluene (TNT) in the aqueous phase from among a variety of cations and a pool of aromatic nitro compounds, respectively. Competitive fluorometric experiments involving mixtures of cations or nitro compounds established 1 as an efficient and selective sensor for both Cu2+ and TNT in aqueous solutions. The limits of detection for Cu2+ and TNT in aqueous solutions were found to be 1.05 and 49.9 μM, respectively. Additionally, the activity of complex 1 as a photocatalyst for degradation of rhodamine B has been investigated.



The authors acknowledge financial assistance from National Natural Science Foundation of China (Nos: 21501124 and 41603124), the program of Science and Technology Department of Sichuan Province (Nos. 2016JY0048, 2016GZ0172, 2017JY0194), the Education Committee of Sichuan Province (No. 18ZB0425, 18ZA0337), the Start-up Foundation of Sichuan University of Science and Engineering (No. 2017RCL02), and Student’s Platform for Innovation and Entrepreneurship Training Program in Sichuan Province (201710622066).

Supplementary material

11243_2018_256_MOESM1_ESM.docx (707 kb)
Supplementary material 1 (DOCX 706 kb)


  1. 1.
    Rachuri Y, Parmar B, Bisht KK, Suresh E (2017) Cryst Growth Des 17:1363–1372CrossRefGoogle Scholar
  2. 2.
    Zhang C, Yan Y, Sun LB, Liang ZQ, Li JY (2016) Cryst Eng Commun 18:4102–4108CrossRefGoogle Scholar
  3. 3.
    Liu C, Yan B (2016) Sensor Actuat B Chem 235:541–546CrossRefGoogle Scholar
  4. 4.
    Gong YN, Huang YL, Jiang L, Lu TB (2014) Inorg Chem 53:9457–9459CrossRefGoogle Scholar
  5. 5.
    Wu L, Zhang XF, Li ZQ, Wu F (2016) Inorg Chem Commun 74:22–25CrossRefGoogle Scholar
  6. 6.
    Vishnoi P, Walawalkar MG, Sen S, Datta A, Patwari GN, Murugavel R (2014) Phys Chem Chem Phys 16:10651–10658CrossRefGoogle Scholar
  7. 7.
    Su YT, Lan GY, Chen WY, Chang HT (2010) Anal Chem 82:8566–8572CrossRefGoogle Scholar
  8. 8.
    Lan GY, Huang CC, Chang HT (2010) Chem Commun 46:1257–1259CrossRefGoogle Scholar
  9. 9.
    Germain MN, Arechederra RL, Minteer SD (2008) J Am Chem Soc 130:15272–15273CrossRefGoogle Scholar
  10. 10.
    Dasary SSR, Senapati D, Singh AK, Anjaneyulu Y, Yu HT, Paresh CR (2010) ACS Appl Mater Interfaces 2:3455–3460CrossRefGoogle Scholar
  11. 11.
    Zhou HC, Long JR, Yaghi OM (2012) Chem Rev 112:673–674CrossRefGoogle Scholar
  12. 12.
    Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Chem Soc Rev 44:6804–6849CrossRefGoogle Scholar
  13. 13.
    Croitor L, Coropceanu EB, Masunov AE, Rivera-Jacquez HJ, Siminel AV, Zelentsov VI, Datsko TY, Fonari MS (2014) Cryst Growth Des 14:3935–3948CrossRefGoogle Scholar
  14. 14.
    Kang ZX, Fan LL, Sun DF (2017) J Mater Chem A 5:10073–10091CrossRefGoogle Scholar
  15. 15.
    Huxford RC, Della Rocca J, Lin W (2010) Curr Opin Chem Biol 14:262–268CrossRefGoogle Scholar
  16. 16.
    Zhao D, Cui Y, Yang Y, Qian G (2016) Cryst Eng Commun 18:3746–3759CrossRefGoogle Scholar
  17. 17.
    Hakansson K, Coorey RV, Zubarev RA, Talrose VL, Hakansson P (2000) J Mass Spectrom 35:337–346CrossRefGoogle Scholar
  18. 18.
    Sylvia JM, Janni JA, Klein JD, Spencer KM (2000) Anal Chem 72:5834–5840CrossRefGoogle Scholar
  19. 19.
    Kandpal M, Bandela AK, Hinge VK, Rao VR, Rao CP (2013) ACS Appl Mater Interfaces 5:3448–13456CrossRefGoogle Scholar
  20. 20.
    Lan A, Li K, Wu H, Olson DH, Emge TJ, Ki W, Hong M, Li J (2009) Angew Chem Int Ed 48:2334–2338CrossRefGoogle Scholar
  21. 21.
    Lee JH, Jaworski J, Jung JH (2013) Nanoscale 5:8533–8540CrossRefGoogle Scholar
  22. 22.
    Sun X, Brückner C, Nieh MP, Lei Y (2014) J Mater Chem A 2:14613–14621CrossRefGoogle Scholar
  23. 23.
    Roy S, Katiyar AK, Mondal SP, Ray SK, Biradha K (2014) ACS Appl Mater Interfaces 6:11493–11501CrossRefGoogle Scholar
  24. 24.
    Gole B, Bar AK, Mukherjee PS (2011) Chem Commun 47:12137–12139CrossRefGoogle Scholar
  25. 25.
    Yang J, Wang Z, Hu K, Li Y, Feng J, Shi J, Gu J (2015) ACS Appl Mater Interfaces 7:11956–11964CrossRefGoogle Scholar
  26. 26.
    Park IH, Medishetty R, Kim JY, Lee SS, Vittal JJ (2014) Angew Chem Int Ed 53:5591–5595CrossRefGoogle Scholar
  27. 27.
    Rachuri Y, Parmar B, Bisht KK, Suresh E (2015) Inorg Chem Front 2:228–236CrossRefGoogle Scholar
  28. 28.
    Nie HR, Zhao Y, Zhang M, Ma YG, Baumgartenb M, Mullen K (2011) Chem Commun 47:1234–1236CrossRefGoogle Scholar
  29. 29.
    Yang X, Wang JH, Su DY, Xia QD, Chai F, Wang CG, Qu FY (2014) Dalton Trans 43:10057–10063CrossRefGoogle Scholar
  30. 30.
    Nie HR, Lv Y, Yao L, Pan YY, Zhao Y, Li P, Sun GN, Ma YG, Zhang M (2014) J Hazard Mater 264:474–480CrossRefGoogle Scholar
  31. 31.
    Kovalev IS, Taniya OS, Slovesnova NV, Kim GA, Santra S, Zyryanov GV, Kopchuk DS, Majee A, Charushin VN, Chupakhin ON (2016) Chem Asian J 11:775–781CrossRefGoogle Scholar
  32. 32.
    Zhang S, Yu T, Sun MT, Yu H, Zhang ZP, Wang SH, Jiang H (2014) Talanta 126:185–190CrossRefGoogle Scholar
  33. 33.
    Li M, Liu ZJ, Wang SW, Calatayud DG, Zhu WH, James TD, Wang LD, Mao BY, Xiao HN (2018) Chem Commun 54:184–187CrossRefGoogle Scholar
  34. 34.
    Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR (2017) J Fluoresc 27:2323–2333CrossRefGoogle Scholar
  35. 35.
    Liu B, Wu WP, Hou L, Wang YY (2014) Chem Commun 50:8731–8734CrossRefGoogle Scholar
  36. 36.
    Tian D, Li Y, Chen RY, Chang Z, Bu XH (2014) J Mater Chem A 2:1465–1470CrossRefGoogle Scholar
  37. 37.
    Zhang SR, Du DY, Qin JS, Bao SJ, Su ZM (2014) Chem Eur J 20:3589–3594CrossRefGoogle Scholar
  38. 38.
    Zhang M, Feng G, Song Z, Zhou YP, Zhao D (2014) J Am Chem Soc 136:7241–7244CrossRefGoogle Scholar
  39. 39.
    Wu Y, Wu J, Luo ZD, Wang J, Li YL, Han YY, Liu JQ (2017) RSC Adv 7:10415–10423CrossRefGoogle Scholar
  40. 40.
    Wu Y, Wu J, Xie B, Zou LK, Li YL, Han YY, Wu XR (2017) J Lumin 192:775–782CrossRefGoogle Scholar
  41. 41.
    Sheldrick GM (1997) SADABS, program for siemens area detector absorption corrections. University of Göttingen, GermanyGoogle Scholar
  42. 42.
    Roztocki K, Jędrzejowski D, Hodorowicz M, Senkovska I, Kaskel S, Matoga D (2010) Inorg Chem 55:9663–9670CrossRefGoogle Scholar
  43. 43.
    Huang XL, Liu L, Gao ML, Han ZB (2016) RSC Adv 6:87945–87949CrossRefGoogle Scholar
  44. 44.
    Wu LL, Wang Z, Zhao SN, Meng X, Song XZ, Feng J, Song SY, Zhang H (2016) Chem Eur J 22:477–480CrossRefGoogle Scholar
  45. 45.
    Tang Q, Liu SX, Liu YW, Miao J, Li SJ, Zhang L, Shi Z, Zheng ZP (2013) Inorg Chem 52:2799–2801CrossRefGoogle Scholar
  46. 46.
    Yang H, He XW, Wang F, Zhang J (2012) J Mater Chem 22:21849–21851CrossRefGoogle Scholar
  47. 47.
    Kan WQ, Liu B, Yang J, Liu YY, Ma JF (2012) Cryst Growth Des 12:2288–2298CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of Chemistry and Environmental EngineeringSichuan University of Science and EngineeringZigongPeople’s Republic of China

Personalised recommendations