Transition Metal Chemistry

, Volume 43, Issue 8, pp 665–672 | Cite as

External cross-linked sulfonate-functionalized N-heterocyclic carbenes: an efficient and recyclable catalyst for Suzuki–Miyaura reactions in water

  • Yu-Fang Fu
  • Kun-Peng SongEmail author
  • Zhi-Juan Zou
  • Ming-Qi Li


A sulfonate-functionalized N-heterocyclic carbene (NHC) was successfully attached to a hyper-cross-linked polymer via an external cross-linking reaction. The structure of Poly-BBIS was confirmed by FTIR spectroscopy, TEM, FESEM, and BET. The Poly-BBIS show a large surface areas (up to 563 m2 g−1) and hydrophilicity, as well as abundant micro-mesoporous, tunable and versatile active sites. The catalytic activity of the Pd derivative Poly-BBIS-Pd2+ was examined for Suzuki–Miyaura cross-coupling reactions in water, followed by an investigation of the reaction mechanism. The Poly-BBIS-Pd2+ gives a yield of 98% for the reaction between bromobenzene and phenylboronic acid with a loading of 0.057 mmol % Pd in water after approximately 2 h. Also, the catalyst can be reused for 5 times without significant loss of activity. This work highlights a low-cost route to the synthesis of heterogeneous catalysts based on hydrophilic sulfonate-functionalized NHC polymers for the Suzuki–Miyaura cross-coupling reaction in water.



This work was supported by National Undergraduate Training Program for Innovation and Entrepreneurship (201710638031), the Key Project Funds of Science and Technology Department of Sichuan Province (2017JY0015), Fundamental Research Funds of China West Normal University (17C038) and Meritocracy Research Funds of China West Normal University (17YC031).

Supplementary material

11243_2018_255_MOESM1_ESM.docx (1.5 mb)
Details of the catalysts prepared and NMR spectrum of the products associated with this article can be found in the supporting information (DOCX 1517 kb)


  1. 1.
    Gholinejad M, Seyedhamzeh M, Razeghi M, Najera C, Kompany-Zareh M (2016) ChemCatChem 8(2):441–447CrossRefGoogle Scholar
  2. 2.
    Clave G, Pelissier F, Campidelli S, Grison C (2017) Green Chem 19(17):4093–4103CrossRefGoogle Scholar
  3. 3.
    Zhong R, Pöthig A, Feng Y, Riener K, Herrmann WA, Kühn FE (2014) Green Chem 16(12):4955–4962CrossRefGoogle Scholar
  4. 4.
    Han J, Liu Y, Guo R (2009) J Am Chem Soc 131(6):2060–2061CrossRefGoogle Scholar
  5. 5.
    Uozumi Y, Yamada YMA (2009) Chem Rec 9(1):51–65CrossRefGoogle Scholar
  6. 6.
    Crabtree RH (2012) Chem Rev 112(3):1536–1554CrossRefGoogle Scholar
  7. 7.
    Chatterjee A, Ward TR (2016) Catal Lett 146(4):820–840CrossRefGoogle Scholar
  8. 8.
    Park G, Lee S, Son SJ, Shin S (2013) Green Chem 15(12):3468CrossRefGoogle Scholar
  9. 9.
    Calabrese JC, Casalnuovo AL (1990) J Am Chem Soc 112:4324–4330CrossRefGoogle Scholar
  10. 10.
    Pahlevanneshan Z, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I, Loghmani-Khouzani H (2016) J Organomet Chem 809:31–37CrossRefGoogle Scholar
  11. 11.
    Azua A, Sanz S, Peris E (2010) Organometallics 29(16):3661–3664CrossRefGoogle Scholar
  12. 12.
    Gao Z, Gouverneur V, Davis BG (2013) J Am Chem Soc 135(37):13612–13615CrossRefGoogle Scholar
  13. 13.
    Ma X, Wang H, Chen W (2014) J Org Chem 79(18):8652–8658CrossRefGoogle Scholar
  14. 14.
    Kim Y-H, Shin S, Yoon H-J, Kim JW, Cho JK, Lee Y-S (2013) Catal Commun 40(Supplement C):18–22CrossRefGoogle Scholar
  15. 15.
    Lambert R, Coupillaud P, Wirotius A-L, Vignolle J, Taton D (2016) Macromol Rapid Commun 37(14):1143–1149CrossRefGoogle Scholar
  16. 16.
    Pucino M, Mougel V, Schowner R, Fedorov A, Buchmeiser MR, Copéret C (2016) Angew Chem Int Ed 55(13):4300–4302CrossRefGoogle Scholar
  17. 17.
    Martinez A, Krinsky JL, Penafiel I, Castillon S, Loponov K, Lapkin A, Godard C, Claver C (2015) Catal Sci Technol 5(1):310–319CrossRefGoogle Scholar
  18. 18.
    Baquero EA, Tricard S, Flores JC, de Jesús E, Chaudret B (2014) Angew Chem Int Ed 53(48):13220–13224CrossRefGoogle Scholar
  19. 19.
    Xu S, Song K, Li T, Tan B (2015) J Mater Chem A 3(3):1272–1278CrossRefGoogle Scholar
  20. 20.
    Rose M, Notzon A, Heitbaum M, Nickerl G, Paasch S, Brunner E, Glorius F, Kaskel S (2011) Chem Commun 47(16):4814–4816CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Riduan SN (2012) Chem Soc Rev 41(6):2083–2094CrossRefGoogle Scholar
  22. 22.
    Wang W, Zheng A, Zhao P, Xia C, Li F (2014) ACS Catal 4(1):321–327CrossRefGoogle Scholar
  23. 23.
    Karimi B, Fadavi Akhavan P (2011) Chem Commun (Camb) 47(27):7686–7688CrossRefGoogle Scholar
  24. 24.
    Tan L, Tan B (2017) Chem Soc Rev 46:3322–3356CrossRefGoogle Scholar
  25. 25.
    Song K, Liu P, Wang J, Tan B, Li T (2016) J Porous Mater 23(3):725–731CrossRefGoogle Scholar
  26. 26.
    Yang Z-Z, Zhao Y, Zhang H, Yu B, Ma Z, Ji G, Liu Z (2014) Chem Commun 50(90):13910–13913CrossRefGoogle Scholar
  27. 27.
    Tan L, Tan B (2017) Chem Soc Rev 46(11):3322–3356CrossRefGoogle Scholar
  28. 28.
    Kore R, Srivastava R (2011) J Mol Catal A Chem 345(1–2):117–126CrossRefGoogle Scholar
  29. 29.
    Godoy F, Segarra C, Poyatos M, Peris E (2011) Organometallics 30(4):684–688CrossRefGoogle Scholar
  30. 30.
    Wang S, Song K, Zhang C, Shu Y, Li T, Tan B (2017) J Mater Chem A 5(4):1509–1515CrossRefGoogle Scholar
  31. 31.
    Guan Z, Hu J, Gu Y, Zhang H, Li G, Li T (2012) Green Chem 14(7):1964–1970CrossRefGoogle Scholar
  32. 32.
    Zhang C, Zhu P-C, Tan L, Liu J-M, Tan B, Yang X-L, Xu H-B (2015) Macromolecules 48(23):8509–8514CrossRefGoogle Scholar
  33. 33.
    Velazquez HD, Verpoort F (2012) Chem Soc Rev 41(21):7032–7060CrossRefGoogle Scholar
  34. 34.
    Liu L, Dong Y, Tang N (2014) Green Chem 16(4):2185CrossRefGoogle Scholar
  35. 35.
    Duan L, Fu R, Zhang B, Shi W, Chen S, Wan Y (2016) ACS Catal 6(2):1062–1074CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal UniversityNanchongPeople’s Republic of China

Personalised recommendations