Skip to main content
Log in

Complexation of hydroxamate-based siderophores with cobalt(II/III): growth inhibitory effect of cobalt(III)-desferricoprogen complex on fungi

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Solution equilibrium results for Co(II) and Co(III) complexes of two natural hydroxamate-based siderophores, the exocyclic desferricrocin (DFR) and the endocyclic triacetylfusarinine (TAF) are presented. The three hydroxamate chelating functions of TAF were found to complete the octahedral coordination sphere of a Co(II) ion in stepwise processes, but following the coordination of two hydroxamates of DFR practically in one step, the third function, most probably because of sterical reasons, remained uncoordinated. A comparison with corresponding results for the previously studied acyclic desferrioxamine B (DFB) and desferricoprogen (DFC) provided some information about the effects of the molecular framework of siderophores on their cobalt-binding ability. The oxidation of the central metal ion under basic conditions and investigation of the cobalt(III) complexes by cyclic voltammetry were also made. Compared to Fe(III), by several orders of magnitude, higher stability complexes were formed with Co(III). The possibility of any effect of the Co(III)-siderophore complex on microbial Fe(III) uptake was tested by investigation of the antifungal effect of Co(III)-DFC in comparison with that of CoCl2 on two fungi cultures, Penicillium brevicompactum and Aspergillus fumigatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. One has to take into account that H4DFB has one extra proton at the non-coordinating terminal amino moiety compared to the other siderophores.

References

  1. Farkas E, Kozma E, Petho M, Herlihy KM, Micera G (1998) Polyhedron 17:3331–3342

    Article  CAS  Google Scholar 

  2. Codd R (2008) Coord Chem Rev 252:1387–1408

    Article  CAS  Google Scholar 

  3. Liu ZD, Hider RC (2002) Coord Chem Rev 232:151–171

    Article  CAS  Google Scholar 

  4. Muri EMF, Nieto MJ, Sindelar RD, Williamson JS (2002) Current Med Chem 9:1631–1653

    Article  CAS  Google Scholar 

  5. Serra P, Bruczko PM, Zapico JM, Puckowska A, Garcia MA, Martin-Santamaria S, Ramos A, de Pascual-Teresa B (2012) Curr Med Chem 19:1036–1064

    Article  CAS  Google Scholar 

  6. Wojtowicz-Praga SM, Dickson RB, Hawkins MJ (1997) Invest New Drugs 15:61–75

    Article  CAS  Google Scholar 

  7. Marks PA, Xu WS (2009) J Cell Biochem 107:600–608

    Article  CAS  Google Scholar 

  8. Bonnitcha PD, Kim BJ, Hocking R, Clegg JK, Turner P, Neville SM, Hambley TW (2012) Dalton Trans 41:11293–11304

    Article  CAS  Google Scholar 

  9. Winkelmann G (2002) Biochem Soc Trans 30:691–696

    Article  CAS  Google Scholar 

  10. Miethke M, Marahiel MA (2007) Microbiol Molbiol Rev 413–451

  11. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  12. Johnson L (2008) Mycol Res 112:170–183

    Article  CAS  Google Scholar 

  13. Butler A, Theisen RM (2010) Coord Chem Rev 254:288–296

    Article  CAS  Google Scholar 

  14. Crumbliss AL, Harrington JM (2009) Adv Inorg Chem 61:179–250

    Article  CAS  Google Scholar 

  15. Evers A, Hancock RD, Martell AE, Motekaitis RJ (1989) Inorg Chem 28:2189–2195

    Article  CAS  Google Scholar 

  16. Enyedy ÉA, Pócsi I, Farkas E (2004) J Inorg Biochem 98:1957–1966

    Article  CAS  Google Scholar 

  17. Farkas E, Bátka D, Kremper G, Pócsi I (2008) J Inorg Biochem 102:1654–1659

    Article  CAS  Google Scholar 

  18. Szabó O, Farkas E (2011) Inorg Chim Acta 376:500–508

    Article  Google Scholar 

  19. Farkas E, Szabó O, Parajdi-Losonczi PL, Balla GY, Pócsi I (2014) J Inorg Biochem 139:30–37

    Article  CAS  Google Scholar 

  20. Farkas E, Enyedy ÉA, Zékány L, Deák GY (2001) J Inorg Biochem 83:107–114

    Article  CAS  Google Scholar 

  21. Farkas E, Enyedy ÉA, Fábián I (2003) Inorg Chem Comm 6:131–134

    Article  CAS  Google Scholar 

  22. Duckworth OW, Bargar JR, Jarzecki AA, Oyerinde O, Spiro TG, Sposito G (2009) Marine Chem 113:114–122

    Article  CAS  Google Scholar 

  23. Kruft BI, Harrington JM, Duckworth OW, Jarzecki AA (2013) J Inorg Biochem 129:150–161

    Article  CAS  Google Scholar 

  24. Albrecht-Gary AM, Crumbliss AL (1998) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 35. Marcel Dekker Inc, New York, pp 239–328

    Google Scholar 

  25. Farkas E, Szabó O (2012) Inorg Chim Acta 392:354–361

    Article  CAS  Google Scholar 

  26. Ndagijimana M, Chaves-López C, Corsetti A, Tofalo R, Sergi M, Paparella A, Guerzoni ME, Suzzi G (2008) Int J Food Microbiol 127:276–283

    Article  CAS  Google Scholar 

  27. Shaligram NS, Singh SK, Singhal RS, Pandey A, Szakacs G (2009) Appl Biochem Biotechnol 159:505–520

    Article  CAS  Google Scholar 

  28. Kousha M, Tadi R, Soubani AO (2011) Eur Respir Rev 20(121):156–174

    Article  CAS  Google Scholar 

  29. Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Mol Cell Biol 1:94–100

    Article  CAS  Google Scholar 

  30. Hördt W, Römheld V, Winkelmann G (2000) Biometals 13:37–46

    Article  Google Scholar 

  31. Leiter E, Emri T, Gyémánt G, Nagy I, Pócsi I, Winkelmann G, Pócsi I (2001) Folia Microbiol 46:127–132

    Article  CAS  Google Scholar 

  32. Ong SA, Neilands JB (1979) J Agric Food Chem 27:990–995

    Article  CAS  Google Scholar 

  33. Emri T, Tóth V, Nagy CT, Nagy G, Pócsi I, Gyémánt G, Antal K, Balla J, Balla G, Román G, Kovács I, Pócsi I (2013) J Sci Food Agric 93:2221–2228

    Article  CAS  Google Scholar 

  34. Tóth V, Antal K, Gyémánt G, Miskei M, Pócsi I, Emri T (2009) Acta Biol Hung 60:321–328

    Article  Google Scholar 

  35. Pócsi I, Jeney V, Kertai P, Pócsi I, Emri T, Gyémánt G, Fésüs L, Balla J, Balla G (2008) Mol Nutr Food Res 52:1434–1447

    Article  Google Scholar 

  36. Szigeti ZM, SzaniszlĂł S, Fazekas E, Gyémánt G, Szabon J, Antal K, Emri T, Balla J, Balla G, Csernoch L, Pócsi I (2014) Acta Microbiol Immunol Hung 61:107–119

    Article  CAS  Google Scholar 

  37. Gran G (1950) Acta Chem Scand 4:559–577

    Article  CAS  Google Scholar 

  38. Irving HM, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475–488

    Article  CAS  Google Scholar 

  39. Zékány L, Nagypál I (1985) In: Legett D (ed) Computational methods for the determination of stability constants. Plenum Press, New York

    Google Scholar 

  40. Baes CF Jr, Messmer RF (1976) The hydrolysis of cations. Willey, New York

    Google Scholar 

  41. Kolthoff IM, Tomsicek WJ (1935) J Phys Chem 39:945–954

    Article  CAS  Google Scholar 

  42. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. Marcel Dekker, INC, New York and Basel

    Google Scholar 

  43. Hegedűs N, Leiter É, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu JH, Pócsi I (2011) J Basic Microbiol 51:561–571

    Article  Google Scholar 

  44. Leiter É, Park HS, Kwon NJ, Han KH, Emri T, Oláh V, Mészáros I, Dienes B, Vincze J, Csernoch L, Yu JH, Pócsi I (2016) Sci Rep 6:20523. https://doi.org/10.1038/srep20523

    Article  CAS  Google Scholar 

  45. Leslie JF, Summerell B (2006) Fusarium laboratory manual. Blackwell Publishing, Oxford

    Book  Google Scholar 

  46. Yao Y, Wang MH, Zhao KY, Wang CC (1998) J Biochem Biophys Methods 36:119–130

    Article  CAS  Google Scholar 

  47. Balázs A, Pócsi I, Hamari Z, Leiter E, Emri T, Miskei M, Oláh J, Tóth V, Hegedüs N, Prade RA, Molnár M, Pócsi I (2010) Mol Genet Genomics 283:289–303

    Article  Google Scholar 

  48. Yin WB, Reinke AW, Szilágyi M, Emri T, Chiang YM, Keating AE, Pócsi I, Wang CC, Keller NP (2013) Microbiol 159:77–88

    Article  CAS  Google Scholar 

  49. Crawford A, Wilson D (2015) FEMS Yeast Res. https://doi.org/10.1093/femsyr/fov071

    Google Scholar 

  50. Schrettl M, Haas H (2011) Curr Opin Microbiol 14:400–405

    Article  CAS  Google Scholar 

  51. Haas H (2014) Nat Prod Rep 31:1266–1276

    Article  CAS  Google Scholar 

  52. Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, Winkelmann G, Oberegger H (2003) Biochem J 371(Pt 2):505–513

    Article  CAS  Google Scholar 

  53. Spellberg B, Ibrahim AS, Chin-Hong PV, Kontoyiannis DP, Morris MI, Perfect JR, Fredricks D, Brass EP (2012) J Antimicrob Chemother 67:715–722

    Article  CAS  Google Scholar 

  54. Haas H, Petrik M, Decristoforo C (2015) PLoS Pathog 11:e1004568

    Article  Google Scholar 

  55. Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E (2016) Coord Chem Rev. https://doi.org/10.1016/j.ccr.2016.05.001

    Google Scholar 

Download references

Acknowledgements

I.Pócsi thanks Mrs. Sára Orsolya Mancsiczky and Katalin Szabó for carrying out some of the biological tests. The research was supported by the EU and co-financed by the European Regional Development Fund under the project GINOP-2.3.2-15-2016-00008 and the Hungarian Scientific Research Fund (OTKA K112317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etelka Farkas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, E., Szabó, O., Gyémánt, G. et al. Complexation of hydroxamate-based siderophores with cobalt(II/III): growth inhibitory effect of cobalt(III)-desferricoprogen complex on fungi. Transit Met Chem 43, 355–365 (2018). https://doi.org/10.1007/s11243-018-0225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0225-5

Navigation