A potassium-encapsulated Preyssler-based structure modified by binuclear cyclic copper(II) clusters: photocatalytic and electrochemical properties

  • Ai-Xiang Tian
  • Yan Yang
  • Huai-Ping Ni
  • Gui-Ying Liu
  • Yu-Bo Fu
  • Meng-Le Yang
  • Guo-Cheng Liu
  • Jun Ying


Through the use of a flexible ligand 1,1′-bis(3,5-dimethyl-1H-pyrazolate)methane (H2bdpm), a K-encapsulated Preyssler-based complex, [Cu4(H2bdpm)4(H2O)10(H6KP5W30O110)]·2(H2bdpm)·14H2O, has been synthesized under hydrothermal conditions. Single crystal X-ray diffraction analysis shows that the complex contains rare K-encapsulated Preyssler anions, which are linked by binuclear cyclic clusters [Cu2(H2bdpm)2]4+ to form a 1D chain. Adjacent chains are further connected by abundant intermolecular forces to construct a 2D supramolecular framework. The photocatalytic and electrochemical properties of the complex have been investigated.

Graphical abstract

(1) The Preyssler-based POM-TMCs are rarely reported. (2) The K-encapsulated Preyssler anion is uncommonly observed in Preyssler-based compound. (3) Preyssler anions are linked by binuclear CuII clusters to form a 1D chain. (4) Compound 1 exhibits photocatalytic and electrochemical properties.



This research received financial support from the National Natural Science Foundation of China (Nos. 21571023, and 21101015) and Talent-supporting Program Foundation of Education Office of Liaoning Province (LJQ2012097).

Supplementary material

11243_2018_294_MOESM1_ESM.doc (992 kb)
Supplementary material 1 (DOC 992 kb)


  1. 1.
    Zhang M, Fu ZW, Xiao M, Yu YH, Wang SJ, Choi MZ, Meng YZ (2016) Chem Commun 52:1151–1153CrossRefGoogle Scholar
  2. 2.
    Guo WW, Lv HJ, Bacsa J, Gao YZ, Lee JS, Hill CL (2016) Inorg Chem 55:461–466CrossRefGoogle Scholar
  3. 3.
    Oms O, Yang S, Salomon W, Marrot J, Dolbecq A, Rivière E, Bonnefont A, Ruhlmann L, Mialane P (2016) Inorg Chem 55:1551–1561CrossRefGoogle Scholar
  4. 4.
    He PL, Xu B, Xu XB, Song L, Wang X (2016) Chem Sci 7:1011–1015CrossRefGoogle Scholar
  5. 5.
    Ma HP, Liu BL, Li B, Zhang LM, Li YG, Tan HG, Zang HY, Zhu GS (2016) J Am Chem Soc 138:5897–5903CrossRefGoogle Scholar
  6. 6.
    Carraro M, Gardan M, Sartorel A, Maccato C, Bonchio M (2016) Dalton Trans 45:14544–14548CrossRefGoogle Scholar
  7. 7.
    Bijelic A, Rompel A (2015) Coord Chem Rev 299:22–38CrossRefGoogle Scholar
  8. 8.
    Wan R, Ma PT, Han MD, Zhang DD, Zhang C, Niu JY, Wang JP (2017) Dalton Trans 46:5398–5405CrossRefGoogle Scholar
  9. 9.
    León MC, Coronado E, Saiz C, García CJG, Ferrero EM, Almeida M, Lopes EB (2001) Mater J Chem 11:2176–2180CrossRefGoogle Scholar
  10. 10.
    Zhang JW, Li Q, Zeng MY, Huang YC, Zhang J, Hao J, Wei YG (2016) Chem Commun 52:2378–2381CrossRefGoogle Scholar
  11. 11.
    Luo H, Zhang P, Yang YX, Gong Y, Lin JH (2016) RSC Adv 6:97890–97898CrossRefGoogle Scholar
  12. 12.
    Chiang MH, Antonio MR, Williams CW, Soderholm L (2004) Dalton Trans 0:801–806Google Scholar
  13. 13.
    Takahashi K, Sano T, Sadakane M (2014) Z Anorg Allg Chem 640:1314–1321CrossRefGoogle Scholar
  14. 14.
    Qin C, Song XZ, Su SQ, Dang S, Feng J, Song SY, Hao ZM, Zhang HJ (2012) Dalton Trans 41:2399–2407CrossRefGoogle Scholar
  15. 15.
    Liang M, Ruan CZ, Sun D, Kong XJ, Ren YP, Long LS, Huang RB, Zheng LS (2014) Inorg Chem 53:897–902CrossRefGoogle Scholar
  16. 16.
    Lu Y, Li YG, Wang EB, Xu XX, Ma Y (2007) Inorg Chim Acta 360:2063–2070CrossRefGoogle Scholar
  17. 17.
    Wang XL, Li J, Tian AX, Lin HY, Liu GY, Hu HL (2011) Inorg Chem Commun 14:103–106CrossRefGoogle Scholar
  18. 18.
    Yang CY, Zhang LC, Wang ZJ, Wang L, Li XH, Zhu ZM (2012) J Solid State Chem 194:270–276CrossRefGoogle Scholar
  19. 19.
    Tian AX, Yang Y, Ying J, Li N, Lin XL, Zhang JW, Wang XL (2014) Dalton Trans 43:8405–8413CrossRefGoogle Scholar
  20. 20.
    Creaser I, Heckel MC, Neitz RZ, Pope MT (1993) Inorg Chem 32:1573–1578CrossRefGoogle Scholar
  21. 21.
    Sheldrick GM (1997) SHELXS-97, Program for the refinement of crystal structures, University of Göttingen, Göttingen, GermanyGoogle Scholar
  22. 22.
    Sheldrick GM (2008) Acta Cryst A 64:112–122CrossRefGoogle Scholar
  23. 23.
    Brown ID, Altermatt D (1985) Acta Crystallogr Sect B 41:244–247CrossRefGoogle Scholar
  24. 24.
    Addison AW, Rao TN, Reedijk J, Rijn JV, Verschoor GC (1984) J Chem Soc Dalton Trans 0:1349–1356Google Scholar
  25. 25.
    Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnirc D (2005) Coord Chem Rev 249:1693–1708CrossRefGoogle Scholar
  26. 26.
    Zhao YQ, Yu K, Wang LW, Wang Y, Wang XP, Sun D (2014) Inorg Chem 53:11046–11050CrossRefGoogle Scholar
  27. 27.
    Tian L, Chen L, Liu L, Lu N, Song WB, Xu HD (2006) Sens Actuators B 113:150–155CrossRefGoogle Scholar
  28. 28.
    Pankove JL (1971) Optical processes in semiconductors[M], Prentice-HallGoogle Scholar
  29. 29.
    Das MC, Xu H, Wang ZY, Srinivas G, Zhou W, Yue YF, Nesterov VN, Qian GD, Chen BL (2011) Chem Commun 47:11715–11717CrossRefGoogle Scholar
  30. 30.
    Wang XL, Gong XH, Zhang JW, Liu GC, Kan XM, Xu N (2015) CrystEngComm 17:4179–4189CrossRefGoogle Scholar
  31. 31.
    Wang P, Shan QJ, Liu L, Zhao CY, Chen L (2018) J Coord Chem 71:457–467CrossRefGoogle Scholar
  32. 32.
    Wang YG, Zhu PP, Li X, Zhou KF, Yang JB, Ma CL, Sha JQ (2017) J Coord Chem 70:3353–3362CrossRefGoogle Scholar
  33. 33.
    Sun JW, Li MT, Sha JQ, Yan PE, Wang C, Li SX, Pan Y (2013) CrystEngComm 15:10584–10589CrossRefGoogle Scholar
  34. 34.
    Tian AX, Yang Y, Ying J, Hou X, Ning YL, Li TJ, Wang XL (2015) Sci China Chem 45:177–185Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ai-Xiang Tian
    • 1
  • Yan Yang
    • 1
  • Huai-Ping Ni
    • 1
  • Gui-Ying Liu
    • 2
  • Yu-Bo Fu
    • 1
  • Meng-Le Yang
    • 1
  • Guo-Cheng Liu
    • 1
  • Jun Ying
    • 1
  1. 1.Department of ChemistryBohai UniversityJinzhouPeople’s Republic of China
  2. 2.Liaoning Ocean and Fisheries Science Research InstituteDalianPeople’s Republic of China

Personalised recommendations