Transition Metal Chemistry

, Volume 43, Issue 2, pp 115–125 | Cite as

Syntheses, structures, and solid-state phosphorescence characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing perpendicular N-aryl functionalities

  • Shotaro Iwata
  • Hidenori Takahashi
  • Asami Ihara
  • Kumiko Hiramatsu
  • Junya Adachi
  • Soichiro Kawamorita
  • Naruyoshi Komiya
  • Takeshi Naota


The syntheses, structures, and solid-state emission characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing N-aromatic functionalities are described herein. A series of Pt complexes bearing various N-phenyl (1) and N-(1-naphthyl) (2) groups on the salicylaldiminato ligands were prepared by reacting PtCl2(CH3CN)2 with the corresponding N-salicylidene aromatic amines, and the trans-coordination and crystal packing of these complexes were unequivocally established based on X-ray diffraction (XRD). Complexes with 2,6-dimethylphenyl (1c), 2,6-diisopropylphenyl (1d), 1-naphthyl (2a), and 1-(2-methylnaphthyl) (2b) groups on the N atoms exhibited intense phosphorescent emission at ambient temperature in the crystalline state, while those with phenyl (1a), 2,6-dibromophenyl (1b), and 2,6-bis(N,N-dimethylamino)phenyl (1e) functionalities were either less emissive or non-emissive under the same conditions. XRD analyses identified significant intramolecular interactions between Pt and H atoms of the N-aryl functionalities in the emissive crystals of 1c, 1d, and 2a. These interactions were evidently an important factor associated with intense emission at ambient temperature.



This work was supported by JSPS KAKENHI Grant Numbers (JP15H03796 and JP16H06516).

Supplementary material

11243_2017_198_MOESM1_ESM.docx (118 kb)
Supplementary material 1 (DOCX 117 kb)


  1. 1.
    Evans RC, Douglas P, Winscom CJ (2006) Coord Chem Rev 250:2093–2126CrossRefGoogle Scholar
  2. 2.
    Yersin H (ed) (2008) Highly efficient OLEDs with phosphorescent materials. Wiley, WeinheimGoogle Scholar
  3. 3.
    Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T (2011) Coord Chem Rev 255:2622–2652CrossRefGoogle Scholar
  4. 4.
    Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Adv Mater 23:926–952CrossRefGoogle Scholar
  5. 5.
    Buss CE, Mann KR (2002) J Am Chem Soc 124:1031–1039CrossRefGoogle Scholar
  6. 6.
    Kato M, Omura A, Toshikawa A, Kishi S, Sugimoto Y (2002) Angew Chem Int Ed 41:3183–3185CrossRefGoogle Scholar
  7. 7.
    Grove LJ, Rennekamp JM, Jude H, Connick WB (2004) J Am Chem Soc 126:1594–1595CrossRefGoogle Scholar
  8. 8.
    Wadas TJ, Wang QM, Kim YJ, Flaschenreim C, Blanton TN, Eisenberg R (2004) J Am Chem Soc 126:16841–16849CrossRefGoogle Scholar
  9. 9.
    Sun Y, Ye K, Zhang H, Zhang J, Zhao L, Li B, Yang G, Yang B, Wang Y, Lai SW, Che CM (2006) Angew Chem Int Ed 45:5610–5613CrossRefGoogle Scholar
  10. 10.
    Shigeta Y, Kobayashi A, Ohba T, Yoshida M, Matsumoto T, Chang HC, Kato M (2016) Chem Eur J 22:2682–2690CrossRefGoogle Scholar
  11. 11.
    Jiang B, Zhang J, Ma JQ, Zheng W, Chen LJ, Sun B, Li C, Hu BW, Tan H, Li X, Yang HB (2016) J Am Chem Soc 138:738–741CrossRefGoogle Scholar
  12. 12.
    Lin CJ, Liu YH, Peng SM, Shinmyozu T, Yang JS (2017) Inorg Chem 56:4978–4989CrossRefGoogle Scholar
  13. 13.
    Yang K, Li SL, Zhang FQ, Zhang XM (2016) Inorg Chem 55:7323–7325CrossRefGoogle Scholar
  14. 14.
    Park H, Kwon E, Chiang H, Im H, Lee KY, Kim J, Kim TH (2017) Inorg Chem 56:8287–8294CrossRefGoogle Scholar
  15. 15.
    Rawashdeh-Omary MA, Omary MA, Fackler JP Jr, Galassi R, Pietroni BR, Burini A (2001) J Am Chem Soc 123:9689–9691CrossRefGoogle Scholar
  16. 16.
    Lim SH, Olmstead MM, Balch AL (2011) J Am Chem Soc 133:10229–10238CrossRefGoogle Scholar
  17. 17.
    Malwitz MA, Lim SH, White-Morris RL, Pham DM, Olmstead MM, Balch AL (2012) J Am Chem Soc 134:10885–10893CrossRefGoogle Scholar
  18. 18.
    Balch AL (2009) Angew Chem Int Ed 48:2641–2644CrossRefGoogle Scholar
  19. 19.
    Liu L, Wang X, Wang N, Peng T, Wang S (2017) Angew Chem Int Ed 56:9160–9164CrossRefGoogle Scholar
  20. 20.
    Lee YA, Eisenberg R (2003) J Am Chem Soc 125:7778–7779CrossRefGoogle Scholar
  21. 21.
    Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) J Am Chem Soc 130:10044–10045CrossRefGoogle Scholar
  22. 22.
    Seki T, Tokodai N, Omagari S, Nakanishi T, Hasegawa Y, Iwasa T, Taketsugu T, Ito H (2017) J Am Chem Soc 139:6514–6517CrossRefGoogle Scholar
  23. 23.
    Perruchas S, Le Goff XF, Maron S, Maurin I, Guillen F, Garcia A, Gacoin T, Boilot JP (2010) J Am Chem Soc 132:10967–10969CrossRefGoogle Scholar
  24. 24.
    Seki T, Takamatsu Y, Ito H (2016) J Am Chem Soc 138:6252–6260CrossRefGoogle Scholar
  25. 25.
    Yam VWW, Au VKM, Leung SYL (2015) Chem Rev 115:7589–7728CrossRefGoogle Scholar
  26. 26.
    Ostrowski JC, Robinson MR, Heeger AJ, Bazan GC (2002) Chem Commun 784–785Google Scholar
  27. 27.
    Procopio EQ, Mauro M, Panigati M, Donghi D, Mercandelli P, Sironi A, D’Alfonso G, De Cola L (2010) J Am Chem Soc 132:14397–14399CrossRefGoogle Scholar
  28. 28.
    Strassert CA, Chien CH, Galvez Lopez MD, Kourkoulos D, Hertel D, Meerholz K, De Cola L (2011) Angew Chem Int Ed 50:946–950CrossRefGoogle Scholar
  29. 29.
    Raimondi A, Panigati M, Maggioni D, D’Alfonso L, Mercandelli P, Mussini P, D’Alfonso G (2012) Inorg Chem 51:2966–2975CrossRefGoogle Scholar
  30. 30.
    Krylova VA, Djurovich PI, Aronson JW, Haiges R, Whited MT, Thompson ME (2012) Organometallics 31:7983–7993CrossRefGoogle Scholar
  31. 31.
    Zink DM, Bächle M, Baumann T, Nieger M, Kühn M, Wang C, Klopper W, Monkowius U, Hofbeck T, Yersin H, Bräse S (2013) Inorg Chem 52:2292–2305CrossRefGoogle Scholar
  32. 32.
    Krikorian M, Liu S, Swager TM (2014) J Am Chem Soc 136:2952–2955CrossRefGoogle Scholar
  33. 33.
    Allampally NK, Daniliuc CG, Strassert CA, De Cola L (2015) Inorg Chem 54:1588–1596CrossRefGoogle Scholar
  34. 34.
    Kumar GR, Thilagar P (2016) Inorg Chem 55:12220–12229CrossRefGoogle Scholar
  35. 35.
    Imoto H, Tanaka S, Kato T, Watase S, Matsukawa K, Yumura T, Naka K (2016) Organometallics 35:364–369CrossRefGoogle Scholar
  36. 36.
    Imoto H, Sasaki H, Tanaka S, Yumura T, Naka K (2017) Organometallics 36:2605–2611CrossRefGoogle Scholar
  37. 37.
    Komiya N, Okada M, Fukumoto K, Jomori D, Naota T (2011) J Am Chem Soc 133:6493–6496CrossRefGoogle Scholar
  38. 38.
    Komiya N, Okada M, Fukumoto K, Kaneta K, Yoshida A, Naota T (2013) Chem Eur J 19:4798–4811CrossRefGoogle Scholar
  39. 39.
    Fukumoto K, Le NHT, Komiya N, Naota T (2014) Inorg Chem Commum 50:88–91CrossRefGoogle Scholar
  40. 40.
    Komiya N, Okada M, Fukumoto K, Iwata S, Naota T (2014) Dalton Trans 43:10074–10085CrossRefGoogle Scholar
  41. 41.
    Komiya N, Okada M, Hoshino M, Le NHT, Naota T (2014) Eur J Inorg Chem 6085–6096Google Scholar
  42. 42.
    Komiya N, Okada M, Inoue R, Kawamorita S, Naota T (2015) Polyhedron 98:75–83CrossRefGoogle Scholar
  43. 43.
    Komiya N, Itami N, Naota T (2013) Chem Eur J 19:9497–9505CrossRefGoogle Scholar
  44. 44.
    Komiya N, Muraoka T, Iida M, Miyanaga M, Takahashi K, Naota T (2011) J Am Chem Soc 133:16054–16061CrossRefGoogle Scholar
  45. 45.
    Wagner PJ, Hammond GS (1968) In: Noyes WA Jr, Hammond GS, Pitts JN Jr (eds) Advances in photochemistry, vol 5. Interscience Publishers, New York, pp 21–156Google Scholar
  46. 46.
    Maeda T, Kawamorita S, Naota T (2016) Polyhedron 117:826–833CrossRefGoogle Scholar
  47. 47.
    Naota T, Koori H (2005) J Am Chem Soc 127:9324–9325CrossRefGoogle Scholar
  48. 48.
    Naito M, Souda H, Koori H, Komiya N, Naota T (2014) Chem Eur J 20:6991–7000CrossRefGoogle Scholar
  49. 49.
    Naito M, Inoue R, Iida M, Kuwajima Y, Kawamorita S, Komiya N, Naota T (2015) Chem Eur J 21:12927–12939CrossRefGoogle Scholar
  50. 50.
    Inoue R, Kawamorita S, Naota T (2016) Chem Eur J 22:5712–5726CrossRefGoogle Scholar
  51. 51.
    Naito M, Komiya N, Naota T (2016) Org Chem Front 3:1286–1294CrossRefGoogle Scholar
  52. 52.
    Komiya N, Kageyama T, Naito M, Naota T (2013) Acta Cryst C69:503–505Google Scholar
  53. 53.
    Naito M, Komiya N, Naota T (2015) J Mol Struct 1102:230–234CrossRefGoogle Scholar
  54. 54.
    Komiya N, Hori T, Naito M, Naota T (2014) Eur J Inorg Chem 156–163Google Scholar
  55. 55.
    Komiya N, Yoshida A, Naota T (2013) Inorg Chem Commun 27:122–126CrossRefGoogle Scholar
  56. 56.
    Fanizzi FP, Intini FP, Maresca L, Natile G (1990) J Chem Soc, Dalton Trans 199–202Google Scholar
  57. 57.
    Burnett MN, Johnson CK (1996) In: ORTEP-III: oak ridge thermal ellipsoid plotprogram for crystal structure illustrations, report ORNL-6895. Oak Ridge National Laboratory, Oak RidgeCrossRefGoogle Scholar
  58. 58.
    Kawamura Y, Sasabe H, Adachi C (2004) Jpn J Appl Phys 43:7729–7730CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of Engineering ScienceOsaka UniversityMachikaneyama, Toyonaka, OsakaJapan
  2. 2.Chemistry LaboratoryThe Jikei University School of MedicineKokuryo, Chofu, TokyoJapan

Personalised recommendations