Advertisement

Transition Metal Chemistry

, Volume 42, Issue 1, pp 69–78 | Cite as

A square pyramidal copper(II) complex of a Schiff base ligand: synthesis, crystal structure, antibacterial and DNA interaction studies

  • Kalyanmoy Jana
  • Tithi Maity
  • Tufan Singha Mahapatra
  • Pradeep Kumar Das Mohapatra
  • Subhas Chandra Debnath
  • Somnath Das
  • Maidul HossainEmail author
  • Bidhan Chandra SamantaEmail author
Article

Abstract

A mononuclear Cu(II) complex [Cu(L)Cl2] has been synthesized from a tridentate Schiff base ligand, piperidin-2-ylmethyl-pyridin-2-ylmethylene-amine (L). The single-crystal X-ray structure of the complex shows a square pyramidal geometry. The complex was tested against several bacteria and showed good antibacterial activities against almost all of the bacteria. The interactions of the title complex with calf thymus DNA (CT-DNA) have been investigated by electronic absorption and fluorescence spectroscopy, showing that the complex interacts with CT-DNA via partial intercalation.

Keywords

Binding Constant Ethidium Bromide Minimal Bactericidal Concentration Schiff Base Ligand Inhibition Zone Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors acknowledge the financial support from the University Grants Commission, Eastern Regional Office through Minor Research Project [No. F. PSW-131/13-14 (ERO) dated March 18, 2014]. Authors thank Dr. Debaprasad Mandal’s group (Dept. of Chemistry, IIT, Ropar) for providing thermogravimetric analysis and Dr. Sanjib K Patra’s group (Dept. of Chemistry, IIT Kharagpur) for providing CV measurement facilities and valuable suggestions. Authors are also grateful to IIT Kharagpur for single-crystal X-ray and PXRD. Authors also wish to thank Prof. Debasis Ray, IIT Kharagpur, for valuable suggestions. KJ, TM and TSM are thankful to University Grants Commission.

Supplementary material

11243_2016_108_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2782 kb)

References

  1. 1.
    Shanmugapriya A, Kalaiarasi G, Kalaivani P, Dallemer F, Prabhakaran R (2016) Inorg Chim Acta 449:107–118CrossRefGoogle Scholar
  2. 2.
    Mustafa M, Ibrahim KM, Moussa MNH (1984) Trans Met Chem 9:243–246CrossRefGoogle Scholar
  3. 3.
    Wu H, Kou F, Jia F, Liu B, Yuan J, Bai Y (2011) J Photochem Photobiol B 105:190–197CrossRefGoogle Scholar
  4. 4.
    Gupta V, Singh S, Gupta YK (2013) Res J Chem Sci 3:26–29Google Scholar
  5. 5.
    Singha Mahapatra T, Chaudhury S, Dasgupta S, Bertolasi V, Ray D (2016) New J Chem 40:2268–2279CrossRefGoogle Scholar
  6. 6.
    Garoufis A, Hadjikakou SK, Hadjiliadis N (2009) Coord Chem Rev 253:1384–1397CrossRefGoogle Scholar
  7. 7.
    Garoufis A, Hadjikakou SK, Hadjiliadis N (2005) In: Gielen M, Tiekink ERT (eds) Metals in medicine, palladium (Pd), in metallotherapeutic drugs and metal-based diagnostic agents, the use of metals in medicine. Wiley, New YorkGoogle Scholar
  8. 8.
    Sadeek SA, Refat MS, Teleb SM (2004) Bull Chem Soc Ethiop 18:149–156CrossRefGoogle Scholar
  9. 9.
    Singha Mahapatra T, Basak D, Chand S, Lengyel J, Shatruk M, Bertolasi V, Ray D (2016) Dalton Trans 45:13576–13589CrossRefGoogle Scholar
  10. 10.
    Bagherzadeh M, Amini M, Ellern A, Woob LK (2012) Inorg Chim Acta 383:46–51CrossRefGoogle Scholar
  11. 11.
    Sarv M, Atakol O, Yilmaz N, Ulku D (1999) Anal Sci 15:401–402CrossRefGoogle Scholar
  12. 12.
    Cheng LX, Tang JJ, Luo H, Jin XL, Dai F, Yang J, Qian YP, Li XZ, Zhou B (2010) Bioorg Med Chem Lett 15:2417–2420CrossRefGoogle Scholar
  13. 13.
    Dong X, Li Y, Li Z, Cui Y, Zhu H (2012) J Inorg Biochem 108:22–29CrossRefGoogle Scholar
  14. 14.
    Alam MS, Choi JH, Lee DU (2012) Bioorg Med Chem 20:4103–4108CrossRefGoogle Scholar
  15. 15.
    Patel MN, Patel CR, Joshi HN (2013) Inorg Chem Commun 27:51–55CrossRefGoogle Scholar
  16. 16.
    Medici S, Peanaa M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddua MA (2015) Coord Chem Rev 284:329–350CrossRefGoogle Scholar
  17. 17.
    Pandeya SN, Sriram D, Nath G, de Clercq E (2000) Arzneimittelforschung 50:55–59Google Scholar
  18. 18.
    Bharti N, Maurya MR, Naqvi F, Azam A (2000) Bioorg Med Chem 10:2243–2245CrossRefGoogle Scholar
  19. 19.
    Sadaf K, Shahab AAN, Siddiqi KS, Husain E, Imrana N (2009) Spectrochim Acta Part A 72:421–428CrossRefGoogle Scholar
  20. 20.
    Sivasankaran NM, David ST (2000) J Indian Chem Soc 77:220–222Google Scholar
  21. 21.
    Psomas G, Tarushi A, Eleni EK, Sanakis Y, Raptopoulou Catherine P, Katsaros N (2006) J Inorg Biochem 100:1764–1773CrossRefGoogle Scholar
  22. 22.
    Filitsa D, Perdih F, Tangoulis V, Turel I, Kessissoglou Dimitris P, Psomas G (2011) J Inorg Biochem 105:476–489CrossRefGoogle Scholar
  23. 23.
    da Chagas SV, Henri B, Luz Juliana S, Georg Raphaela C, Oliveira CC, Ana Maria da Ferreira C (2011) J Inorg Biochem 105:1692–1703CrossRefGoogle Scholar
  24. 24.
    Sousa I, Claro V, Pereira João L, Amaral AL, Cunha-Silva L, de Castro B, Feio MJ, Pereira E, Gameiro P (2012) J Inorg Biochem 110:64–71CrossRefGoogle Scholar
  25. 25.
    Chalkidou E, Perdih F, Turel I, Kessissoglou Dimitris P, Psomas G (2012) J Inorg Biochem 113:55–65CrossRefGoogle Scholar
  26. 26.
    Arjmand F, Jamsheera A, Mohapatra DK (2013) J Photochem Photobiol B 121:75–85CrossRefGoogle Scholar
  27. 27.
    Singha Mahapatra T, Roy A, Chaudhury S, Dasgupta S, Shrivastava SL, Bertolasi V, Ray D (2016) Eur J Inorg Chem. doi: 10.1002/ejic.201601092 Google Scholar
  28. 28.
    Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 9:2563–2606CrossRefGoogle Scholar
  29. 29.
    Karlin KD, Tyeklár Z (1993) Bioinorganic chemistry of copper. Chapman & Hall, New YorkCrossRefGoogle Scholar
  30. 30.
    Zhang YZ, Wei HY, Pan F, Wang ZM, Chen ZD, Gao S (2005) Angew Chem Int Ed 44:5841–5846CrossRefGoogle Scholar
  31. 31.
    Janiak C (2003) J Chem Soc Dalton Trans 14:2781–2804CrossRefGoogle Scholar
  32. 32.
    Chen B, Eddaoudi M, Reineke TM, Kampf JW, O’Keeffe M, Yaghi OM (2000) J Am Chem Soc 122:11559–11560CrossRefGoogle Scholar
  33. 33.
    Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) Angew Chem Int Ed 44:4745–4749CrossRefGoogle Scholar
  34. 34.
    El-Halim HFA, Omar MM, Mohamed GG, Sayed MAE (2011) Eur J Chem 2:178–188CrossRefGoogle Scholar
  35. 35.
    Raman N, Kulandaisamy A, Jeyasubramanian K (2001) Synth React Inorg Met Org Chem 31:1249–1260CrossRefGoogle Scholar
  36. 36.
    Li MX, Zhang LZ, Chen CL, Niu JY, Ji BS (2012) J Inorg Biochem 106:117–125CrossRefGoogle Scholar
  37. 37.
    SMART, SAINT and XPREP; Siemens Analytical X-ray Instruments Inc.: Madison, WI (1995)Google Scholar
  38. 38.
    Sheldrick GM (1997) SHELXS-97. University of Göttingen, GöttingenGoogle Scholar
  39. 39.
    Sheldrick GM (1997) SHELXL 97, program for crystal structure refinement. University of Göttingen, GöttingenGoogle Scholar
  40. 40.
    WinGX System, v. 1.80.05, L. Farrugia, University of Glasgow, UKGoogle Scholar
  41. 41.
    Sheldrick GM (1999–2003) SADABS: software for empirical absorption correction. University of Göttingen, Institute fur AnorganischeChemiederUniversitat, GöttingenGoogle Scholar
  42. 42.
    DIAMOND, visual crystal structure information system, version 3.1. Crystal Impact, Bonn (2004)Google Scholar
  43. 43.
    Farrugia LJ (1999) J Appl Crystallogr 32:837–838CrossRefGoogle Scholar
  44. 44.
    Perez C, Paul M, Bazerque P (1990) Acta Biol Med Exp 15:113–115Google Scholar
  45. 45.
    National Committee for Clinical Laboratory Standards (1993) Performance standards for antimicrobial disc susceptibility tests. Approved Standard. NCCLS Publications, Villanova, p M2–A5Google Scholar
  46. 46.
    Wolfe A Jr, Shimer GH, Meehan T (1987) Biochemistry 26:6392–6396CrossRefGoogle Scholar
  47. 47.
    Rajendiran V, Karthik R, Palaniandavar M, Stoeckli-Evans H, Periasamy VS, Akbarsha MA, Srinag BS, Krishnamurthy H (2007) Inorg Chem 46:8208–8221CrossRefGoogle Scholar
  48. 48.
    Dimiza F, Papadopoulos AN, Tangoulis V, Psycharis V, Raptopoulou CP, Kessissoglou DP, Psomas G (2010) Dalton Trans 39:4517–4528CrossRefGoogle Scholar
  49. 49.
    Tarushi A, Polatoglou E, Kljun J, Turel I, Psomas G, Kessissoglou DP (2011) Dalton Trans 40:9461–9473CrossRefGoogle Scholar
  50. 50.
    Addison AW, Rao TN (1984) J Chem Soc Dalton Trans 7:1349–1356CrossRefGoogle Scholar
  51. 51.
    Maity D, Chattopadhyay S, Ghosh A, Drew MGB, Mukhopadhyay G (2009) Polyhedron 28:812–818CrossRefGoogle Scholar
  52. 52.
    Xing C, Shi Z, Yu M, Wang S (2008) Polymer 49:2698–2703CrossRefGoogle Scholar
  53. 53.
    Xu G, Fan J, Jiao K (2008) Electroanalysis 20:1209–1214CrossRefGoogle Scholar
  54. 54.
    Singh OI, Damayanti M, Singh NR, Singh RKH, Mohapatra M, Kadam RM (2005) Polyhedron 24:909–916CrossRefGoogle Scholar
  55. 55.
    Devi SP, Devi RKB, Damayanti M, Singh NR, Singh RKH, Kadam RM (2011) J Coord Chem 64:1586–1601CrossRefGoogle Scholar
  56. 56.
    Chaveerach U, Meenongwa A, Trongpanich Y, Soikum C, Chaveerach P (2010) Polyhedron 29:731–738CrossRefGoogle Scholar
  57. 57.
    Meenongwa A, Brissos RF, Soikum C, Chaveerach P, Gamez P, Trongpanich Y, Chaveerach U (2015) New J Chem 39:664–675CrossRefGoogle Scholar
  58. 58.
    Jamuna K, Reddy DHK, Kumar BN, Ramana DKV, Seshaiah K (2011) Orient J Chem 27:1141–1147Google Scholar
  59. 59.
    Chaires JB (1997) Biopolymers 44:201–215CrossRefGoogle Scholar
  60. 60.
    Arjmand F, Jamsheera A, Mohapatra DK (2013) J Photochem Photobiol B 121:75–85CrossRefGoogle Scholar
  61. 61.
    Tarushi A et al (2014) Eur J Med Chem 74:187–198CrossRefGoogle Scholar
  62. 62.
    Tarushi A et al (2013) J Inorg Biochem 128:85–96CrossRefGoogle Scholar
  63. 63.
    Dimiza F, Perdih F, Tangoulis V, Turel I, Kessissoglou DP, Psomas G (2011) J Inorg Biochem 105:476–489CrossRefGoogle Scholar
  64. 64.
    Baguley BC, Le Bret M (1984) Biochemistry 23:937–943CrossRefGoogle Scholar
  65. 65.
    Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) J Am Chem Soc 123:5878–5891CrossRefGoogle Scholar
  66. 66.
    LePecq JB, Paoletti C (1967) J Mol Biol 27:87–106CrossRefGoogle Scholar
  67. 67.
    Morgan AR, Lee JS, Pulleyblank DE, Murray NL, Evans DH (1979) Nucleic Acids Res 7:547–569CrossRefGoogle Scholar
  68. 68.
    Ramachandran E, Raja DS, Rath NP, Natarajan K (2013) Inorg Chem 52:1504–1514CrossRefGoogle Scholar
  69. 69.
    Tarushi AI, Raptopoulou CP, Psycharis V, Terzis A, Psomas G, Kessissoglou DP (2010) Bioorg Med Chem 18:2678–2685CrossRefGoogle Scholar
  70. 70.
    Garcia-Gimenez JL, Gonzalez-Alvarez M, Liu-Gonzalez M, Macias B, Borras J, Alzuet G (2009) J Inorg Biochem 103:923–934CrossRefGoogle Scholar
  71. 71.
    Garcia-Gimenez JL, Alzuet G, Gonzalez-Αlvarez M, Liu-Gonzalez M, Castineiras A, Borras J (2009) J Inorg Biochem 103:243–255CrossRefGoogle Scholar
  72. 72.
    Li D, Tian J, Gu W, Liu X, Yan S (2010) J Inorg Biochem 104:171–179CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kalyanmoy Jana
    • 1
  • Tithi Maity
    • 2
  • Tufan Singha Mahapatra
    • 3
  • Pradeep Kumar Das Mohapatra
    • 4
  • Subhas Chandra Debnath
    • 5
  • Somnath Das
    • 6
  • Maidul Hossain
    • 6
    Email author
  • Bidhan Chandra Samanta
    • 1
    Email author
  1. 1.Department of ChemistryMugberia Gangadhar MahavidyalayaBhupatinagar, Purba MedinipurIndia
  2. 2.Department of ChemistryPrabhat Kumar CollegeContai, Purba MedinipurIndia
  3. 3.Department of ChemistryIIT KharagpurKharagpurIndia
  4. 4.Department of MicrobiologyVidyasagar UniversityPaschim MedinipurIndia
  5. 5.Department of ChemistryUniversity of KalyaniWest BengalIndia
  6. 6.Department of Chemistry and Chemical TechnologyVidyasagar UniversityPaschim MedinipurIndia

Personalised recommendations