Transition Metal Chemistry

, Volume 40, Issue 6, pp 673–679 | Cite as

Synthesis and photophysical characterization of ruthenium(II) and platinum(II) complexes with bis-pyridylethynyl-phenanthroline ligands as a metalloligand

  • Michito ShiotsukaEmail author
  • Yusuke Ueno
  • Daiki Asano
  • Tomoya Matsuoka
  • Katsuya Sako


Novel ruthenium complexes Ru(L)(bpy)2(PF6)2 and platinum organometallic complexes Pt(L)(−≡−C6H5CH3)2 with bis-(pyridinyl)ethynyl-phenanthrolines (L = 3,8-bis[2-(3-pyridinyl)ethynyl]-1,10-phenanthroline or 3,8-bis[2-(4-pyridinyl)ethynyl]-1,10-phenanthroline) that function as metalloligands by extra pyridyl units have been prepared using respective synthetic methods. These complexes have broad absorption bands assignable to the MLCT band as the main contributing factor in the 400 to 550 nm wavelength region. Furthermore, these complexes show phosphorescence centered around 680 nm upon excitation at 425 nm. These emissions were assigned to a triplet MLCT-based luminescence for the ruthenium complexes, while a triplet MLCT as the main element, including the interligand charge transfer as the minor element, was assigned for the platinum organometallic complexes. The quantum yields of the emission of the present ruthenium complexes were relatively high, and these complexes are exactly phosphorescent dyes, although the emission intensities of the platinum complexes are poor. These two types of complexes are capable of selective photophysical detection of some metal ions and can serve as metalloligands in the construction of supramolecular metallocycles.


Ruthenium Phenanthroline Ruthenium Complex Platinum Complex Ethynyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by JSPS KAKENHI Grant Number 26410070 from Japan Society for the Promotion of Science, Japan.


  1. 1.
    Yan X, Cook TR, Wang P, Haung F, Stang PJ (2015) Nat Chem 7:342–348CrossRefGoogle Scholar
  2. 2.
    Wang M, Vajpayee V, Shanmugaraju S, Zheng YR, Zhao Z, Kim H, Mukherjee PS, Chi KW, Stang PJ (2011) Inorg Chem 50:1506–1512CrossRefGoogle Scholar
  3. 3.
    Dolain C, Hatakeyama Y, Sawada T, Tashiro S, Fujita M (2010) J Am Chem Soc 132:5564–5565CrossRefGoogle Scholar
  4. 4.
    Murase T, Nishijima Y, Fujita M (2012) J Am Chem Soc 134:162–164CrossRefGoogle Scholar
  5. 5.
    Murase T, Sato S, Fujita M (2007) Angew Chem Int Ed 46:5133–5136CrossRefGoogle Scholar
  6. 6.
    Kang B, Kurutz JW, Youm KT, Totten RK, Hupp JT, Nguyen BT (2012) Chem Sci 3:1938–1944CrossRefGoogle Scholar
  7. 7.
    Bansal D, Hundal G, Gupta R (2015) Eur J Inorg Chem 2015:1022–1032Google Scholar
  8. 8.
    Shiotsuka M, Toda T, Matsubara K, Itou Y, Hashimoto T (2013) Trans Met Chem 38:913–922CrossRefGoogle Scholar
  9. 9.
    Yang J, Bhadbhade M, Donald WA, Iranmanesh H, Moore EG, Yan H, Beves JE (2015) Chem Commun 51:4465–4468CrossRefGoogle Scholar
  10. 10.
    Wang L, Yang W, Yi FY, Wang H, Xie Z, Tang J, Sun ZM (2013) Chem Commun 49:7911–7913CrossRefGoogle Scholar
  11. 11.
    Sharma S, Singh SK, Pandey DS (2008) Inorg Chem 47:1179–1189CrossRefGoogle Scholar
  12. 12.
    Hissler M, Connick WB, Geiger DK, MaGarrah JE, Lipa D, Lachicotte RJ, Eisenberg R (2000) Inorg Chem 39:447–457CrossRefGoogle Scholar
  13. 13.
    Whittle CE, Weinstein JA, George MW, Schanze KS (2001) Inorg Chem 40:4053–4062CrossRefGoogle Scholar
  14. 14.
    Lee SH, Chan CTL, Wong KMC, Lam WH, Kwok WM, Yam VWW (2014) J Am Chem Soc 136:10041–10052CrossRefGoogle Scholar
  15. 15.
    Castellano FN, Pomestchenko IE, Shikhova E, Hua F, Muro ML, Rajapakse N (2006) Coord Chem Rev 250:1819–1828CrossRefGoogle Scholar
  16. 16.
    Bin XZ, Li E, Chen ZH, Chen ZN (2012) J Mater Chem 22:11427–11441CrossRefGoogle Scholar
  17. 17.
    Zhang X, Wang JY, Ni J, Zhang LY, Chen ZN (2012) Inorg Chem 51:5569–5579CrossRefGoogle Scholar
  18. 18.
    Ziessel R, Stroh C (2004) Tetrahedron Lett 45:4051–4055CrossRefGoogle Scholar
  19. 19.
    Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, Oishi S, Tobita S (2009) Phys Chem Chem Phys 11:9850–9860CrossRefGoogle Scholar
  20. 20.
    Resendiz MJE, Noveron JC, Disteldorf H, Fischer S, Stang PJ (2004) Org Lett 4:651–653CrossRefGoogle Scholar
  21. 21.
    Shiotsuka M, Kondo H, Inomata T, Sako K, Masuda H (2012) Chem Lett 41:1417–1419CrossRefGoogle Scholar
  22. 22.
    Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Zelewsky AV (1988) Coord Chem Rev 84:85–277CrossRefGoogle Scholar
  23. 23.
    Ni J, Wu YH, Zhang X, Li B, Zhang LY, Chen ZN (2009) Inorg Chem 48:10202–10210CrossRefGoogle Scholar
  24. 24.
    Ni J, Zhang X, Wu YH, Zhang LY, Chen ZN (2011) Chem Eur J 17:1171–1183CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michito Shiotsuka
    • 1
    Email author
  • Yusuke Ueno
    • 1
  • Daiki Asano
    • 1
  • Tomoya Matsuoka
    • 1
  • Katsuya Sako
    • 1
  1. 1.Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations