Advertisement

Transition Metal Chemistry

, Volume 39, Issue 4, pp 407–420 | Cite as

Detailed mechanistic study on ligand substitution reactions in dinuclear platinum(II) complexes: effect of alkanediamine linker

  • Peter O. Ongoma
  • Deogratius JaganyiEmail author
Article

Abstract

Substitution of the coordinated water ligands from the cis-[{Pt(NH3)2H2O}2-μ-NH2(CH2) n NH2]4+ (n = 2–4, 6, 8, 10) complexes: EnPt, PropPt, ButPt, HexPt, OctPt and DecPt with S-donor nucleophiles thiourea, N,N-dimethyl-2-thiourea and N,N,N,N-tetramethyl-2-thiourea was studied under pseudo-first-order conditions as a function of concentration and temperature, using stopped-flow and UV–Vis Spectrophotometric techniques. The substitution reaction proceeded in two steps: simultaneous substitution of the aqua ligands, followed by the displacement of the ammine ligands in the trans-position due to the strong trans-effect of the coordinated thiourea nucleophiles, with each of the steps being sensitive to steric and σ-electronic properties of the alkanediamine linker. A comparison of the second-order rate constants, k 2,1st and k 2,2nd, indicates that the rate constants of the first step are 1–2 orders larger than those of the second step in all cases. The large negative ΔS values support an associative mode of substitution mechanism for both reaction steps. 1H and 195Pt NMR spectroscopy established that the α,ω-alkanediamine linkers remained coordinated to the metal centres, possibly due to their cis geometry to the incoming thiourea nucleophiles.

Graphical Abstract

The lability of aqua ligands of cis-[{Pt(NH3)2H2O}2-μ-NH2(CH2) n NH2]4+ (n = 2–10) complexes decreased from EnPt to DecPt, due to lower electrophilicity of the platinum centre caused by σ-donor effect of the (CH2) n units and to steric constraints of coordinated thiourea ligands. The experimental results are supported by density function theory (DFT) at the B3LYP/LACVP** level.

Keywords

Dinuclear Complex Density Function Theory Aqua Ligand TMTU Diaqua 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors greatly acknowledge financial support from the National Research Foundation (NRF) Pretoria, South Africa, and the University of KwaZulu-Natal. P.O.O gratefully acknowledges continued support from Egerton University, Kenya. The authors kindly thank Craig Grimmer for the support with NMR measurements.

Supplementary material

11243_2014_9815_MOESM1_ESM.doc (3.8 mb)
Figures S1 to S3 show UV–Visible spectra for PropPt, ButPt and DecPt at different of pH values. Figures S4–S23, illustrate different concentration and temperature dependent studies for all nucleophiles and complexes. Table S1 shows a summary of the used wavelengths and Tables S2–S25 summarise all values of k obs determined for all reactions at different concentrations and temperatures for all nucleophiles. Included, are Figures S24 to S35 for IR, MS, 195Pt NMR spectra of the selected complexes and 13C NMR spectra for DecPt complex. (DOC 3872 kb)

References

  1. 1.
    Rosenberg B, Van Camp L, Trosko JE, Mansour VH (1969) Nature 222:385CrossRefGoogle Scholar
  2. 2.
    Fuertes MA, Alonso C, Perez JM (2003) Chem Rev 103:645CrossRefGoogle Scholar
  3. 3.
    Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307CrossRefGoogle Scholar
  4. 4.
    van Zutphen S, Reedijk J (2005) Coord Chem Rev 24:2845CrossRefGoogle Scholar
  5. 5.
    Wong E, Giandomenico CM (1999) Chem Rev 99:2451CrossRefGoogle Scholar
  6. 6.
    Oliver RTD (2001) Curr Opin Oncol 13:191CrossRefGoogle Scholar
  7. 7.
    Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467CrossRefGoogle Scholar
  8. 8.
    Reedijk J (1999) Chem Rev 99:2499CrossRefGoogle Scholar
  9. 9.
    Dyson PJ, Sava G (2006) Dalton Trans 1929Google Scholar
  10. 10.
    Abu-Surrah AS, Kettunen M (2006) Curr Med Chem 13:1337CrossRefGoogle Scholar
  11. 11.
    Kelland LR (2007) Nat Rev Cancer 7:573CrossRefGoogle Scholar
  12. 12.
    Reedijk J (2009) Eur J Inorg Chem 2009:1303Google Scholar
  13. 13.
    Soldatović T, Bugarčić ŽD, van Eldik R (2009) Dalton Trans 4526Google Scholar
  14. 14.
    Hall MD, Hambley TW (2002) Coord Chem Rev 232:49CrossRefGoogle Scholar
  15. 15.
    Zhang CX, Lippard SJ (2003) Curr Opin Chem Biol 7:481CrossRefGoogle Scholar
  16. 16.
    Ertürk H, Puchta R, van Eldik R (2009) Eur J Inorg Chem 2009:1331Google Scholar
  17. 17.
    Fan D, Yang X, Wang X, Zhang S, Mao J, Ding J, Lin L, Guo Z (2007) J Biol Inorg Chem 12:655 (and references therein)CrossRefGoogle Scholar
  18. 18.
    Farrell N (1995) Comm Inorg Chem 16(6):373CrossRefGoogle Scholar
  19. 19.
    Wheate NJ, Collins JG (2003) Coord Chem Rev 241:133CrossRefGoogle Scholar
  20. 20.
    Kalayda GV, Komeda S, Ikeda K, Sato T, Chikuma M, Reedijk J (2003) Eur J Inorg Chem 24:4347Google Scholar
  21. 21.
    Komeda S, Kalayda GV, Lutz M, Spek AL, Sato T, Chikuma M, Reedijk J (2003) J Med Chem 46:1210CrossRefGoogle Scholar
  22. 22.
    Wheate NJ, Cullinane C, Webster LK, Collins JG (2001) Anti-Cancer Drug Des 16:91Google Scholar
  23. 23.
    Colella G, Pennati M, Bearzatto A, Leone R, Colangelo D, Manzotti C (2001) Br J Cancer 84:1387CrossRefGoogle Scholar
  24. 24.
    Jodrell DI, Evans TRJ, Steward W, Cameron D, Prendiville J, Aschele C (2004) Eur J Cancer 40:1872CrossRefGoogle Scholar
  25. 25.
    Harris AL, Yang X, Hegmans A, Povirk L, Ryan JJ, Kelland L, Farrell NP (2005) Inorg Chem 44:9598CrossRefGoogle Scholar
  26. 26.
    Kasparkova J, Farrell N, Brabec V (2000) J Biol Chem 275:15789CrossRefGoogle Scholar
  27. 27.
    Ali MS, Whitmire KH, Toyomasi T, Siddik ZH, Khokhar AR (1999) J Inorg Biochem 77:231CrossRefGoogle Scholar
  28. 28.
    Cox JW, Berners-Price SJ, Davies MS, Barlage W, Qu Y, Farrell N (2000) Inorg Chem 39:1710CrossRefGoogle Scholar
  29. 29.
    Jaganyi D, Munisamy VM, Reddy D (2006) Int J Chem Kinet 38:202CrossRefGoogle Scholar
  30. 30.
    Hofmann A, van Eldik R (2003) J Chem Soc Dalton Trans 2979Google Scholar
  31. 31.
    Mambanda A, Jaganyi D, Hochreuther S, van Eldik R (2010) Dalton Trans 39:3595CrossRefGoogle Scholar
  32. 32.
    Ertürk H, Hofmann A, Puchta R, van Eldik R (2007) Dalton Trans 2295Google Scholar
  33. 33.
    Oehlsen ME, Qu Y, Farrell N (2003) Inorg Chem 42:5498CrossRefGoogle Scholar
  34. 34.
    Montero EI, Zhang J, Moniodis JJ, Berners-Price SJ, Farrell NP (2010) Chem Eur J 16:9175CrossRefGoogle Scholar
  35. 35.
    Summa N, Maigut J, Puchta R, van Eldik R (2007) Inorg Chem 46:2094CrossRefGoogle Scholar
  36. 36.
    Oehlsen M, Hegmans A, Qu Y, Farrell N (2005) J Biol Inorg Chem 10:433CrossRefGoogle Scholar
  37. 37.
    Williams JW, Qu Y, Bullus GH, Alvorado E, Farrell NP (2007) Inorg Chem 46:5820CrossRefGoogle Scholar
  38. 38.
    Zerzankova L, Suchankova T, Vrana O, Farrell NP, Brabec V, Kasparkova J (2010) Biochem Pharmacol 79:112CrossRefGoogle Scholar
  39. 39.
    Perrin DD, Armarego WLF, Perrin DR (1980) Purification of laboratory chemicals, 2nd edn. Pergamon, OxfordGoogle Scholar
  40. 40.
    Hollis LS, Amundsen AR, Stern EW (1989) J Med Chem 32:128CrossRefGoogle Scholar
  41. 41.
    Qu Y, Farrell N (1992) Inorg Chem 31:930CrossRefGoogle Scholar
  42. 42.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  43. 43.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  44. 44.
    Microcal™ Origin™ (1991–2003) Version 7.5, Microcal Software, Inc., One Roundhouse Plaza, Northampton, MA, 1060, USAGoogle Scholar
  45. 45.
    Bugarčić ZD, Petrović BV, Jelić R (2001) Transit Met Chem 26:66Google Scholar
  46. 46.
    Appleton TG, Hall JR, Ralph SF, Thompson CMS (1984) Inorg Chem 23:3521CrossRefGoogle Scholar
  47. 47.
    Zhang J, Thomas DS, Davies MS, Berners-Price SJ, Farrell N (2005) J Biol Inorg Chem 10:652CrossRefGoogle Scholar
  48. 48.
    Hochreuther S, Puchta R, van Eldik R (2011) Inorg Chem 50:8984CrossRefGoogle Scholar
  49. 49.
    Norman RE, Ranford J, Sadler PJ (1992) Inorg Chem 31:880 (and reference cited therein)CrossRefGoogle Scholar
  50. 50.
    Kasherman Y, Sturup S, Gibson D (2009) J Biol Inorg Chem 14:387CrossRefGoogle Scholar
  51. 51.
    Ma G, Min Y, Huang F, Jiang T, Liu Y (2010) Chem Commun 46:6938Google Scholar
  52. 52.
    Oehlsen ME, Hegmans A, Qu Y, Farrell N (2005) Inorg Chem 44:3004CrossRefGoogle Scholar
  53. 53.
    Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorg Chem 42:1688CrossRefGoogle Scholar
  54. 54.
    Mambanda A, Jaganyi D (2011) Dalton Trans 40:79CrossRefGoogle Scholar
  55. 55.
    Appleton TG, Hall JR, Ralph SF, Thompson CSM (1989) Inorg Chem 28:1989CrossRefGoogle Scholar
  56. 56.
    Reddy D, Jaganyi D (2011) Int J Chem Kinet 43:161CrossRefGoogle Scholar
  57. 57.
    Hofmann A, Dahlengburg L, van Eldik R (2003) Inorg Chem 42:6528CrossRefGoogle Scholar
  58. 58.
    Chen J-T (2006) Platinum. In: Scott RA (ed) Encyclopaedia of inorganic chemistry. Wiley, New YorkGoogle Scholar
  59. 59.
    Soldatović T, Jovanović S, Bugarčić ŽD, van Eldik R (2012) Dalton Trans 41:876CrossRefGoogle Scholar
  60. 60.
    Ongoma OP, Jaganyi D (2013) Dalton Trans 42:2724CrossRefGoogle Scholar
  61. 61.
    Ongoma OP, Jaganyi D (2013) Transit Met Chem 38:587CrossRefGoogle Scholar
  62. 62.
    Ongoma OP, Jaganyi D (2013) Int J Chem Kinet 45:676CrossRefGoogle Scholar
  63. 63.
    Tobe ML, Burgess J (1999) Inorganic reaction mechanisms. Addison Wesley, Longman, Ltd., Essex, pp 30–33, 70–112Google Scholar
  64. 64.
    Basolo F, Pearson RG (1967) Mechanisms of inorganic reactions, 2nd edn. Wiley, New York, pp 80–115Google Scholar
  65. 65.
    Atwood JD (1997) Inorganic and organometallic reaction mechanisms, 2nd edn. Wiley-VCH Inc., New York, pp 43–61Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations