Advertisement

Transition Metal Chemistry

, Volume 37, Issue 6, pp 505–517 | Cite as

Mechanistic studies of the selective reduction of ruthenium(III) containing trinuclear oxo complexes by l-ascorbic acid in aqueous solution

  • Mark A. W. Lawrence
  • Paul T. Maragh
  • Tara P. Dasgupta
Article

Abstract

The reduction of the Ru(III) oxo-centred trinuclear acetate cations, [Ru33-O)(μ2-CH3CO2)6(H2O)3]+ and [Ru2Cr(μ3-O)(μ2-CH3CO2)6(H2O)3]+, by the biological reductant l-ascorbic acid was studied spectrophotometrically under pseudo first-order conditions over the ranges 3.05 ≤ pH ≤ 4.83 (acetate buffer), 15 °C ≤ θ ≤ 30 °C and at I = 0.5 mol dm−3 (NaClO4). The first electron transfer in the redox process resulted in mixed-valence species [Ru2M(μ3-O)(μ2-CH3CO2)6(H2O)3]0, where M = Ru or Cr, followed by the slow consecutive reduction of other Ru(III) ions. The kinetics of the formation of the mixed-valence species was studied in detail, and a mechanism in support of these data is proposed. The intricate mechanistic details of the subsequent reactions are unclear as the spectral characteristics of the species involved could not be resolved from those of the first intermediate. The final products, however, were found to be Ru(II) (and Cr(III) for the mixed-metal species) in acetate buffer. The electron-transfer mechanism has been proposed to be inner-sphere, as deduced from Marcus cross-relationship. In an aqueous acetate buffer at I = 1.0 mol dm−3 (NaClO4), the cyclic voltammograms of the complexes were found to be quasi-reversible and pH dependent and have values of 0.18 and 0.19 V (relative to SHE) at pH = 3.41 for the [Ru33-O)(μ2-CH3CO2)6(H2O)3]+ and [Ru2Cr(μ3-O)(μ2-CH3CO2)6(H2O)3]+ cations, respectively.

Keywords

Ruthenium Complex Cation Observe Rate Constant 8453A Diode Array Spectrophotometer Predict Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Professor Willem H. Mulder and Ms Kerry-Ann Green for their valuable comments to this work, and The University of the West Indies (Mona) Board of Graduate Studies and Research, for funding.

Supplementary material

11243_2012_9616_MOESM1_ESM.doc (517 kb)
Supplementary material 1 (DOC 517 kb)
11243_2012_9616_MOESM2_ESM.doc (26 kb)
Supplementary material 2 (DOC 26 kb)
11243_2012_9616_MOESM3_ESM.doc (36 kb)
Supplementary material 3 (DOC 36 kb)

References

  1. 1.
    Sasaki Y, Nagasawa A, Tokiwa-Yamamoto A, Ito T (1993) Inorg Chim Acta 212:175–182CrossRefGoogle Scholar
  2. 2.
    White RP, Stride JA, Bollen SK, Chai Sa-Ard N, Kearly GJ, Jayasooriya UA, Cannon RD (1993) J Am Chem Soc 115:7778–7782CrossRefGoogle Scholar
  3. 3.
    Vincent JB (1994) Inorg Chem 33:5604–5606CrossRefGoogle Scholar
  4. 4.
    Sasaki Y, Yoshida Y, Ohto A, Tokiwa A, Ito T, Kobayashi H, Uryu N, Mogi I (1993) Chem Lett 22:69–72CrossRefGoogle Scholar
  5. 5.
    Ohto A, Sasaki Y, Ito T (1994) Inorg Chem 33:1245–1246CrossRefGoogle Scholar
  6. 6.
    Velayutham M, Gopinath CS, Subramanian S (1996) Chem Phys Lett 249:71–76CrossRefGoogle Scholar
  7. 7.
    Van Houten J, Watts RJ (1976) J Am Chem Soc 98:4853–4858CrossRefGoogle Scholar
  8. 8.
    Caspar JV, Meyer TJ (1983) J Am Chem Soc 105:5583–5590CrossRefGoogle Scholar
  9. 9.
    Sauvage J, Collin J, Chambron J, Guillerez S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L (1994) Chem Rev 94:993–1019CrossRefGoogle Scholar
  10. 10.
    Gilbert JA, Eggleston DS, Murphy WR Jr, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107:3855–3864CrossRefGoogle Scholar
  11. 11.
    Rotzinger FP, Munavalli S, Comte P, Hurst JK, Gratzel M, Pern F, Frank AJ (1987) J Am Chem Soc 109:6619–6626CrossRefGoogle Scholar
  12. 12.
    Zong R, Thummel RP (2005) J Am Chem Soc 127:12802–12803CrossRefGoogle Scholar
  13. 13.
    Sasaki Y, Tokiwa A, Ito T (1987) J Am Chem Soc 109:6341–6347CrossRefGoogle Scholar
  14. 14.
    Sasaki Y, Suzuki M, Nagasawa A, Tokiwa A, Ebihara M, Yamaguchi T, Kabuto C, Ochi T, Ito T (1991) Inorg Chem 30:4903–4908CrossRefGoogle Scholar
  15. 15.
    Baumann JA, Salmon DJ, Wilson ST, Meyer TJ, Hatfield WE (1978) Inorg Chem 17:3342–3350CrossRefGoogle Scholar
  16. 16.
    Baumann JA, Salmon DJ, Wilson ST, Meyer TJ (1979) Inorg Chem 18:2472–2479CrossRefGoogle Scholar
  17. 17.
    Mitchell RW, Spencer A, Wilkinson G (1973) J Chem Soc, Dalton Trans 1973:846–854CrossRefGoogle Scholar
  18. 18.
    Fouda SA, Hui BCY, Rempel GL (1978) Inorg Chem 17:3213–3220CrossRefGoogle Scholar
  19. 19.
    Bilgrien C, Davis S, Drago RS (1987) J Am Chem Soc 109:3786–3787CrossRefGoogle Scholar
  20. 20.
    Davis S, Drago RS (1988) Inorg Chem 27:4759–4760CrossRefGoogle Scholar
  21. 21.
    Powell G, Richens DT, Powell AK (1993) Inorg Chim Acta 213:147–155CrossRefGoogle Scholar
  22. 22.
    Fujihara T, Aonahata J, Kumakura S, Nagasawa A, Murakami K, Ito T (1998) Inorg Chem 37:3779–3784CrossRefGoogle Scholar
  23. 23.
    Houston JR, Yu P, Casey WH (2005) Inorg Chem 44:5176–5182CrossRefGoogle Scholar
  24. 24.
    Lawrence MAW, Thomas SE, Maragh PT, Dasgupta TP (2011) Transition Met Chem 36:553–563CrossRefGoogle Scholar
  25. 25.
    Lawrence MAW, Maragh PT, Dasgupta TP (2012) Inorg Chim Acta 388:88–97Google Scholar
  26. 26.
    Maragh PT, Thomas SE, Dasgupta TP (2005) Inorg Chim Acta 358:3610–3616CrossRefGoogle Scholar
  27. 27.
    Lawrence MAW, Maragh PT, Dasgupta TP (2010) J Coord Chem 63:2517–2527CrossRefGoogle Scholar
  28. 28.
    Dawson RMC, Elliott DC, Elliott WH, Jones KM (eds) (1969) Data for biochemical research, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Spencer A, Wilkinson G (1972) J Chem Soc, Dalton Trans 1972:1570–1577CrossRefGoogle Scholar
  30. 30.
    Dubicki L, Day P (1972) Inorg Chem 11(8):1868–1875CrossRefGoogle Scholar
  31. 31.
    Burgess J (2005) Ions in Solution Basic: Principles of Chemical Interaction, 2nd edn. Horwood Publishing, ChichesterGoogle Scholar
  32. 32.
    Spiccia L, Stoeckli-Evans H, Marty W, Giovanoli R (1987) Inorg Chem 26:474–482CrossRefGoogle Scholar
  33. 33.
    Rapaport I, Helm L, Merbach AE, Bernhard P, Ludi A (1988) Inorg Chem 27:873–879CrossRefGoogle Scholar
  34. 34.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, NYGoogle Scholar
  35. 35.
    Akhtar MJ, Haim A (1988) Inorg Chem 27:1608–1610CrossRefGoogle Scholar
  36. 36.
    Aebisher N, Sidorenkova E, Ravera M, Laurenczy G, Osella D, Weber J, Merbach AE (1997) Inorg Chem 36:6009–6020CrossRefGoogle Scholar
  37. 37.
    Manchanda R (1996) Inorg Chim Acta 245:91–95CrossRefGoogle Scholar
  38. 38.
    Fujihara T, Aonahata J, Kumakura S, Nagasawa A, Murakami K, Ito T (1998) Inorg Chem 37:3779–3784CrossRefGoogle Scholar
  39. 39.
    Sasaki Y, Umakoshi K, Imamura T, Kikuchi A, Kishimoto A (1997) Pure Appl Chem 69:205–210CrossRefGoogle Scholar
  40. 40.
    Taqui Khan MM, Shukla RS (1988) Inorg Chim Acta 149:89–94CrossRefGoogle Scholar
  41. 41.
    Taqui Khan MM, Shukla RS (1991) Polyhedron 10:2711–2715CrossRefGoogle Scholar
  42. 42.
    Kagayama N, Sekiguchi M, Inada Y, Takagi HD, Fuahashi S (1994) Inorg Chem 33:1881–1885CrossRefGoogle Scholar
  43. 43.
    Mercer EE, Buckley RR (1965) Inorg Chem 4:1692–1695CrossRefGoogle Scholar
  44. 44.
    Sasaki Y, Suzuki M, Tokiwa A, Ebihara M, Yamaguchi T, Kabuto C, Ito T (1988) J Am Chem Soc 110:6251–6252CrossRefGoogle Scholar
  45. 45.
    Neubold P, Wieghardt K, Nuber B, Weiss J (1989) Inorg Chem 28:459–467CrossRefGoogle Scholar
  46. 46.
    Zoski CG (2007) Handbook of electrochemistry. Elsevier, New YorkGoogle Scholar
  47. 47.
    Marcus RA (1968) Electrochim Acta 13:995–1004CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mark A. W. Lawrence
    • 1
  • Paul T. Maragh
    • 1
  • Tara P. Dasgupta
    • 1
  1. 1.Department of ChemistryUniversity of the West IndiesJamaicaWest Indies

Personalised recommendations