Advertisement

Transition Metal Chemistry

, Volume 37, Issue 4, pp 321–329 | Cite as

Cu(bapen)M(CN)4·H2O complexes exhibiting chain-like structures (bapen = N,N′-bis(3-aminopropyl)-1,2-diaminoethane, M = Ni, Pd): preparations, crystal structures, spectroscopic and magnetic properties

  • J. ČernákEmail author
  • M. Stolárová
  • E. Čižmár
  • M. Tomás
  • L. R. Falvello
Article

Abstract

Single crystals of Cu(bapen)Ni(CN)4·H2O and Cu(bapen)Pd(CN)4·H2O (bapen = N,N′-bis(3-aminopropyl)-1,2-diaminoethane) were isolated from the aqueous systems copper(II)—bapen—[M(CN)4]2− (M = Ni, Pd). Crystals of the two compounds are isostructural and are built up of two crystallographically independent quasi-linear chains [-Cu(bapen)-μ2-NC-Ni(CN)22-CN-] n and solvate water molecules. The copper(II) centers exhibit the usual distorted octahedral coordination with one tetradentate bapen ligand in the equatorial plane (mean Cu–N are 2.030 Å for Cu(bapen)Ni(CN)4·H2O and 2.018 Å for Cu(bapen)Pd(CN)4·H2O), while the axial positions are occupied by nitrogen atoms from μ2-bridging cyanido ligands with longer Cu–N bonds (mean values are 2.544 Å for Cu(bapen)Ni(CN)4·H2O and 2.543 Å for Cu(bapen)Pd(CN)4·H2O). One of the two independent coordinated bapen ligands is disordered, as are the water molecules of crystallization. The Ni and Pd atoms in both studied compounds exhibit the usual square coordination with the bridging cyanido ligands trans to each other. Several OH···O, N–H···O and N–H···N hydrogen bonds enhance the stability of the structures. ESR spectra corroborated the presence of Jahn–Teller anisotropy at the copper(II) atoms. Magnetic studies in the temperature range 1.8–300 K reveal that both Cu(bapen)Ni(CN)4·H2O and Cu(bapen)Pd(CN)4·H2O follow Curie-Weiss laws with θ = −0.51 K and θ = −0.34 K, respectively, suggesting the presence of weak antiferromagnetic interactions.

Keywords

Exchange Coupling Cyclam Teller Effect Potassium Cyanide Hydrogen Bonding Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

E.Č. thanks for hospitality of FZD Dresden and S.A. Zvyagin for fruitful discussions during ESR measurements. This work was supported by the Slovak grant VEGA (grant no. 1/0089/09), VVGS PF 22/2011Ch, and by SAS Centre of Excellence: CFNT MVEP. Material support of U.S. Steel is also gratefully acknowledged. Funding from the Ministry of Science and Innovation (Spain) under grants MAT2011-27233-C02-1 and CONSOLIDER 25200, and from the Diputación General de Aragón is gratefully acknowledged.

Supplementary material

11243_2012_9592_MOESM1_ESM.doc (20 kb)
Supplementary material 1 (DOC 19 kb)
11243_2012_9592_MOESM2_ESM.tif (31.2 mb)
Supplementary material 2 (TIFF 31906 kb)

References

  1. 1.
    Valigura D, Moncol' J, Korábik M, Púčeková Z, Lis T, Mroziński J, Melník M (2006) Eur J Inorg Chem 2006:3813–3817CrossRefGoogle Scholar
  2. 2.
    Tudor V, Marin G, Kavtsov V, Simonov YA, Julve M, Lloret F, Andruh M (2006) Rev Roum Chim 51:367–371Google Scholar
  3. 3.
    Baran P, Boča R, Breza M, Elias H, Fuess H, Jorík V, Klement R, Svoboda I (2002) Polyhedron 21:1561–1571CrossRefGoogle Scholar
  4. 4.
    Orendáč M, Orendáčová A, Černák J, Feher A (1995) Sol State Comm 94:833–835CrossRefGoogle Scholar
  5. 5.
    Kuchár J, Černák J, Mayerová Z, Kubáček P, Žák Z (2003) Sol State Phenom 90–91:323–328CrossRefGoogle Scholar
  6. 6.
    Čižmár E, Orendáčová A, Orendáč M, Kuchár J, Vavra M, Potočňák I, Černák J, Casini E, Feher A (2006) Phys Stat Sol B-Bas Sol State Phys 243:268–271Google Scholar
  7. 7.
    Černák J, Kuchár J, Stolárová M, Kajňaková M, Vavra M, Potočňák I, Falvello LR, Tomás M (2010) Trans Met Chem 35:737–744CrossRefGoogle Scholar
  8. 8.
    Kwak CH, John RP, Jee JE, Kim HJ, Kim J (2006) Inorg Chem Commun 9:533–536CrossRefGoogle Scholar
  9. 9.
    Trávníček Z, Herchel R, Mikulík J, Zbořil R (2010) J Solid State Chem 183:1046–1054CrossRefGoogle Scholar
  10. 10.
    Fernelius WC, Burbage JJ (1946) Inorganic Syntheses, vol 2. McGraw-Hill Book Inc, New York, pp 227–228Google Scholar
  11. 11.
    Brauer G (1981) Handbuch der präparativen anorganischen Chemie (3. Auflage). Ferdinand Enke Verlag, StuttgartGoogle Scholar
  12. 12.
    Blessing RH (1995) Acta Crystallogr A51:33–38Google Scholar
  13. 13.
    Oxford Diffraction Ltd. (2009) CrysAlisPro, Version 1.171.33.31Google Scholar
  14. 14.
    Blessing RH (1997) J. Appl Cryst 30:421–426CrossRefGoogle Scholar
  15. 15.
    Sheldrick GM (2008) Acta Crystallogr A64:112–122Google Scholar
  16. 16.
    Sheldrick GM (2001) SADABS. Version 2.03. University of Göttingen, GermanyGoogle Scholar
  17. 17.
    Crystal Impact Diamond—Crystal and Molecular Structure Visualization (2008) Crystal Impact—Brandenburg K & Putz H GbR, Postfach 1251, D-53002 BonnGoogle Scholar
  18. 18.
    Nakamoto K (1997) Infrared spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  19. 19.
    Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier Science Publishing Company, AmsterdamGoogle Scholar
  20. 20.
    Černák J, Orendáč M, Potočňák I, Chomič J, Orendáčová A, Skoršepa J, Feher A (2002) Coord Chem Rev 224:51–66CrossRefGoogle Scholar
  21. 21.
    Seitz K, Peschel S, Babel D (2001) Z Anorg Allg Chem 627:929–934CrossRefGoogle Scholar
  22. 22.
    Akitsu T, Endo Y (2009) Acta Crystallogr E65:m406–m407Google Scholar
  23. 23.
    Kuchár J, Černák J, Abboud KA (2004) Acta Crystallogr 60:m492–m494Google Scholar
  24. 24.
    Hanko J, Orendáč M, Kuchár J, Žák Z, Černák J, Orendáčová A, Feher A (2007) Sol State Commun 142:128–131CrossRefGoogle Scholar
  25. 25.
    Potočňák I, Vavra M, Čižmár E, Kajňaková M, Radváková A, Steinborn D, Zvyagin SA, Wosnitza J, Feher A (2009) J Solid State Chem 182:196–202CrossRefGoogle Scholar
  26. 26.
    Stoll S, Schweiger A (2006) J Magn Reson 178:42–55CrossRefGoogle Scholar
  27. 27.
    Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchange coupled systems. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • J. Černák
    • 1
    Email author
  • M. Stolárová
    • 1
  • E. Čižmár
    • 2
  • M. Tomás
    • 3
  • L. R. Falvello
    • 4
  1. 1.Department of Inorganic Chemistry, Institute of ChemistryP. J. Šafárik University in KošiceKosiceSlovakia
  2. 2.Centre of Low Temperature Physics of the Faculty of ScienceP. J. Šafárik University in Košice and Institute of Experimental Physics of the Slovak Academy of ScienceKosiceSlovakia
  3. 3.Synthetic Chemistry and Homogeneous Catalysis InstituteC.S.I.C.-University of ZaragozaZaragozaSpain
  4. 4.Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de AragónC.S.I.C.-University of ZaragozaZaragozaSpain

Personalised recommendations