Advertisement

Transition Metal Chemistry

, Volume 35, Issue 4, pp 483–490 | Cite as

A kinetic method for the determination of organosulfur compounds by inhibition: determination of cysteine, 2,3-dimercaptopropanol and thioglycolic acid

  • Neetu BansalEmail author
Article

Abstract

A kinetic method for the determination of organosulfur compounds by UV spectrophotometry is described. Organosulfur compounds have been shown to inhibit the Hg(II)-catalyzed substitution of cyanide in hexacyanoferrate(II) by 2-methylpyrazine (2-Mepz). The inhibitory effect is proportional to the concentration of inhibitor and can be used as the basis for the determination of trace amounts of organosulfur compounds such as cysteine, 2,3-dimercaptopropanol (DMP) and thioglycolic acid (TGA). Both the influence of the reaction variables and interference of a variety of ions have been studied. A mechanism for the inhibition process is proposed. The determination range depends on the amount of Hg(II) added and stability of the Hg(II)–ligand complex. Kinetic parameters were determined from Lineweaver–Burk plots, obtained in the absence and presence of the inhibitor. Excellent linearity is observed for all analytes over their respective concentration ranges with correlation coefficient >0.9. The condition calibration curves were linear in the range of 5 × 10−6–15 × 10−6 M for cysteine, 1 × 10−7–7 × 10−7 M for DMP and 1 × 10−6–10 × 10−6 M for TGA. The detection limits were 1.18 × 10−7 M for cysteine, 4.16 × 10−8 M for DMP and 1.30 × 10−7 M for TGA. The effects of amino acids that can interfere in the determination of cysteine were studied.

Keywords

Hexacyanoferrate Thioglycolic Acid Organosulfur Compound Potassium Hydrogen Phthalate Potassium Hexacyanoferrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Author is grateful to The University of the South Pacific, Suva, Fiji for providing financial and other necessary support to carry out this project. The author also wishes to sincerely thank Dr. Godwin Ayoko, School of Physical and Chemical Sciences Queensland University of Technology, Australia for reading and providing useful comments on the manuscript.

References

  1. 1.
    Ruiz-Díaz JJJ, Torriero AAJ, Salinas E, Marchevsky EJ, Sanz MI, Raba J (2006) Talanta 68(4):1343–1352CrossRefGoogle Scholar
  2. 2.
    Kargosha K, Ahmadi SH, Zeeb M, Moeinossadat SR (2008) Talanta 74(4):753–759CrossRefGoogle Scholar
  3. 3.
    Nie L, Ma H, Sun M, Li X, Su M, Liang S (2003) Talanta 59(5):959–964CrossRefGoogle Scholar
  4. 4.
    Berlin M, Ullrebg S (1963) Nature 197:84–85CrossRefGoogle Scholar
  5. 5.
    Vilensky JA, Robertson WM, Gilman S (2002) Neurology 59:914–916Google Scholar
  6. 6.
    Gabard B (1980) Br J Pharmacol 68(4):607–610Google Scholar
  7. 7.
    Rooselaar J, Liem DH (1981) Int J Cosmet Sci 3(1):37–47CrossRefGoogle Scholar
  8. 8.
    Lau C, Qin X, Liang J, Lu J (2004) Anal Chim Acta 514(1):45–49CrossRefGoogle Scholar
  9. 9.
    Li ZP, Duan XR, Liu CH, Du BA (2006) Anal Biochem 351(1):18–25CrossRefGoogle Scholar
  10. 10.
    Baldrianova L, Agrafiotou P, Svancara I, Vytras K, Sotiropoulos S (2008) Electrochem Commun 10(6):918–921CrossRefGoogle Scholar
  11. 11.
    Xu H, Zhang W, Zhu W, Wang D, Ye J, Yamamoto K, Jin L (2005) Anal Chim Acta 545(2):182–188CrossRefGoogle Scholar
  12. 12.
    Głowacki R, Bald E (2009) J Chromatogr B 877(28):3400–3404CrossRefGoogle Scholar
  13. 13.
    Liu J, Itoh J (2006) Talanta 70(4):791–796CrossRefGoogle Scholar
  14. 14.
    Lunar ML, Rubio S, Bendito DP, Carreto ML, McLeod CW (1997) Anal Chim Acta 337(3):341–349CrossRefGoogle Scholar
  15. 15.
    Rezaei B, Mokhtari A (2007) Spectrochim Acta A 66(2):359–363CrossRefGoogle Scholar
  16. 16.
    Cavrini V, Andrisano V, Gatti R, Scapini G (2007) Int J Cosmet Sci 12(4):141–150CrossRefGoogle Scholar
  17. 17.
    Wang LH, Chen ZS (2005) Electroanalysis 9(16):1294–1297CrossRefGoogle Scholar
  18. 18.
    Zen JM, Yang HH, Chiu MH, Chen YJ, Shih Y (2009) J AOAC 92(2):574–579Google Scholar
  19. 19.
    Colovos G, Freiser H (1969) Talanta 16(12):1605–1607CrossRefGoogle Scholar
  20. 20.
    Rancic SM, Nikolic-Mandic SD, Mandic LM (2005) Anal Chim Acta 547(1):144–149CrossRefGoogle Scholar
  21. 21.
    Abbasi S, Esfandyarpour M, Taher MA, Daneshfar A (2007) Spectrochim Acta Part A Mol Biomol Spectrosc 67A(3–4):578–581CrossRefGoogle Scholar
  22. 22.
    Martinovic A, Kukoc-Modun L, Radic N (2007) Anal Lett 40(4):805–815CrossRefGoogle Scholar
  23. 23.
    Ensafi AA, Keyvanfard M (2002) Anal Lett 35(2):423–433CrossRefGoogle Scholar
  24. 24.
    Mousavi MF, Barzegar M, Rahmani A, Jabbari A (2002) Mikrochim Acta 140(1–2):41–44Google Scholar
  25. 25.
    Phull M, Nigam PC (1983) Talanta 30(6):401–404CrossRefGoogle Scholar
  26. 26.
    Bansal N (2009) Transition Met Chem 34:695–702CrossRefGoogle Scholar
  27. 27.
    Weast RC (1985) CRC handbook of chemical and physics: a ready reference book of chemical and physical data, 65th edn. CRC Press, USAGoogle Scholar
  28. 28.
    Mason HL (1930) J Biol Chem 86:623–634Google Scholar
  29. 29.
    Srivastava A, Bose S (1977) Curr Sci 46:562Google Scholar
  30. 30.
    Alshehri S, Burgess J, Morgan GH, Patel B, Patel MS (1993) Transit Met Chem 18:619Google Scholar
  31. 31.
    Asperger S, Murati I, Palvovic D (1960) J Chem Soc Dalton Trans 730–736Google Scholar
  32. 32.
    Martell AE, Smith RM (1971) Sp. Pub. No. 25, Chemical SocietyGoogle Scholar
  33. 33.
    Maslowska J, Leszczynska J (1985) Talanta 32(9):883–886CrossRefGoogle Scholar
  34. 34.
    Nelson DL, Cox MM (2008) Principles of biochemistry, 5th edn. W.H. Freeman, New YorkGoogle Scholar
  35. 35.
    Klockow D, Auffarth J, Kopp C (1977) Anal Chim Acta 89(1):37–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Biological, Chemical and Environmental SciencesThe University of the South PacificSuvaFiji Islands

Personalised recommendations