Transition Metal Chemistry

, Volume 33, Issue 3, pp 317–321 | Cite as

The formation of Pt(P–P)(X)(COAr) (X=Cl, I; Ar=Ph, 2-Tioph) complexes via insertion of carbon monoxide



Pt(diphosphine)X(aryl) complexes [diphosphine = 1,3-bis(diphenylphosphino)propane (dppp); aryl=phenyl, 2-thiophenyl; X=Cl, I] have been reacted with carbon monoxide in chloroform. It has been revealed by in situ NMR studies that the starting compounds insert carbon monoxide into the Pt-aryl group resulting in Pt(diphosphine)X{C(O)aryl} complexes. It has been found that the phenyl complexes are much more reactive than the corresponding 2-thiophenyl complexes. Similarly, higher reactivity has been observed with iodo than with the chloro complexes.



The authors thank the Hungarian Research Fund (OTKA NI61591) and the Joint Project of the European Union—Hungarian National Development Program (GVOP-3.2.1-2004-04-0168/3) for the financial support.


  1. 1.
    Collmann JP, Hegedus LS, Norton JR, Finke RG (1987) Principles and applications of organotransition metal chemistry. University Science Books, Mill Valley, CAGoogle Scholar
  2. 2.
    Wilkinson G, Stone FGA, Abel EW (eds) (1982) Comprehensive organometallic chemistry. Pergamon Press, OxfordGoogle Scholar
  3. 3.
    Cornils B, Herrmann WA (eds) (1996) Applied homogeneous catalysis with organometallic compounds. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Beller M, Bolm C (eds) (1998) Transition metals for organic synthesis (Vol. I–II). Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Omae I (1998) Applications of organometallic compounds. Wiley, New YorkGoogle Scholar
  6. 6.
    (a) Yamamoto A (1995) J Organomet Chem, 500:337; (b) Lin Y-S, Yamamoto A (1998) Organometallics 17:3466; (c) Brinkmann PHP, Luinstra GA (1999) J Organomet Chem 572:193; (d) Aresta M, Giannecaro P, Tommasi I, Dibenedetto A, Lanfredi AMM, Ugozzoli F (2000) Organometallics 19:3879Google Scholar
  7. 7.
    Xu Q, Heaton BT, Jacob C, Mogi K, Ichihashi Y, Souma Y, Kanamori K, Eguchi T (2000) J Am Chem Soc 122:6862CrossRefGoogle Scholar
  8. 8.
    Lin GY, Jones ND, Gossage RA, McDonald R, Cavell RG (2003) Angew Chem Int Ed 42:4054CrossRefGoogle Scholar
  9. 9.
    Newmann CP, Cave GWV, Wong M, Errington W, Alcock NW, Rourke JP (2001) J Chem Soc Dalton Trans 2678Google Scholar
  10. 10.
    (a) Gladiali S, Bayón JC, Claver C (1996) Tetrahedron Asymmetry 6:1453; (b) Agbossou F, Carpentier J-F, Mortreux A (1995) Chem Rev 95:2485; (c) Consiglio G, Pino P, Flowers LI, Pittmann CU Jr (1983) J Chem Soc, Chem Commun 612; (d) Haelg P, Consiglio G, Pino P (1985) J Organomet Chem 296:281; (e) Consiglio G, Morandini F, Scalone M, Pino P (1985) J Organomet Chem 279:193; (f) Kollár L, Consiglio G, Pino P (1987) J Organomet Chem 330:305; (g) Kollár L, Bakos J, Tóth I, Heil B (1989) J Organomet Chem 370:257; (h) Consiglio G, Nefkens SCA, Borer A (1991) Organometallics 10:2046; (i) Tóth I, Guo I, Hanson B (1993) Organometallics 12:848; (j) Parrinello G, Stille JK (1987) J Am Chem Soc 109:7122Google Scholar
  11. 11.
    Fujimura O (1998) J Am Chem Soc 120:10032CrossRefGoogle Scholar
  12. 12.
    Casey CP, Martins SC, Fagan MA (2004) J Am Chem Soc 126:5585CrossRefGoogle Scholar
  13. 13.
    Skoda-Földes R, Kollár L (2002) Curr Org Chem 6:1097, and references cited thereinCrossRefGoogle Scholar
  14. 14.
    Jánosi L, Kollár L, Macchi P, Sironi A (2006) J Organomet Chem 691:2846CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Inorganic ChemistryUniversity of PécsPecsHungary

Personalised recommendations