Advertisement

Transition Metal Chemistry

, Volume 32, Issue 8, pp 1091–1095 | Cite as

Stepwise synthesis of peripherally dimetallated metallo-tetraazaporphyrins with linear and bent motifs

  • Rajeev Kumar
  • Ajay Kumar
  • Rajendra PrasadEmail author
Article

Abstract

Two new dinuclear and two new trinuclear complexes of 2,3,7,8,12,13,17,18-octakis(methylthio)tetraazaporphyrinatomagnesium(II), [Mg(OMTTAP)] were synthesized using a convenient stepwise process. These complexes possess (bpy)2RuII and Cp(PPh3)RuII metal moieties directly attached to the β-positions in the [Mg(OMTTAP)] through thioether chelation. Complexes were characterized using 1H-n.m.r., u.v.–vis and mass spectroscopic data. The peripheral binding of the two RuII units significantly influenced redox potentials of the OMTTAP core by lowering E1/2 for the OMTTAP centered oxidation and reduction processes, both, as evident from their cyclic voltammograms. The stepwise synthesis reported here demonstrates success of a convenient strategy to obtain hybrid, trimetallic, redox active chromophores with linear and bent motifs.

Keywords

Porphyrin Dinuclear Complex Trinuclear Complex Trans Complex Stepwise Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heath J.R., Kuekes P.J., Snider G.S. and Williams R.S. (1998). Science 280: 1716 CrossRefGoogle Scholar
  2. 2.
    Heath J.R. (2000). Pure Appl. Chem. 72: 11 Google Scholar
  3. 3.
    Tour J.M. (2000). Acc. Chem. Res. 33: 791 CrossRefGoogle Scholar
  4. 4.
    Tour J.M. and James D.K. (2003). Brenner, D.W., Lyshevski, S.E. and Iafrate, G.J. (eds) Handbook of Nanoscience, Engineering and Technology., CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Baird D., Nordmann A. and Schummer J. (2004). Discovering The Nanoscale. IOS Press, Amsterdam Google Scholar
  6. 6.
    James D.K. and Tour J.M. (2006). Aldrichim. Acta 3: 47 Google Scholar
  7. 7.
    Sauvage J.P., Collin J.P., Chambran J.C. and Guillerez S.C. (1994). Chem. Rev. 94: 993 CrossRefGoogle Scholar
  8. 8.
    Collin J.P., Harriman A., Heitz V., Odobel F. and Sauvage J.P. (1994). J. Am. Chem. Soc. 116: 5679 CrossRefGoogle Scholar
  9. 9.
    M. Oda and H. Matsumura, US Patent, US 6914276 B2 (2005).Google Scholar
  10. 10.
    Hagemann O., Jorgensen M. and Krebs F.C. (2006). J. Org. Chem. 71: 5546 CrossRefGoogle Scholar
  11. 11.
    Juris A., Balzani V., Barigelletti F., Campagna S., Belser P. and Von Zelewsky A. (1988). Coord. Chem. Rev. 84: 85 CrossRefGoogle Scholar
  12. 12.
    Venturi M., Marchioni F., Balzani V., Opris D.M., Henze O. and Schluter A.D. (2003). Eur. J. Org. Chem. 21: 4227 CrossRefGoogle Scholar
  13. 13.
    R. Prasad, E. Murguly and N.R. Branda, Chem. Commn., 488 (2003).Google Scholar
  14. 14.
    Prasad R., Murguly E. and Branda N.R. (2001). Inorg. Chem. Commn. 4: 219 CrossRefGoogle Scholar
  15. 15.
    Prasad R. and Kumar A. (2005). J. Porph. Phthal. 9: 509 CrossRefGoogle Scholar
  16. 16.
    Prasad R. and Kumar A. (2005). Inorg. Chem. Acta 358: 3201 CrossRefGoogle Scholar
  17. 17.
    Prasad R., Kumar A. and Gupta V.K. (2004). Talanta 63: 1027 CrossRefGoogle Scholar
  18. 18.
    Kumar A., Prasad R. and Gupta V.K. (2004). Combinat. Chem. High Throu. Scre. 7: 367 Google Scholar
  19. 19.
    Prasad R., Gupta V.K. and Kumar A. (2004). Anal. Chim. Acta 508: 61 CrossRefGoogle Scholar
  20. 20.
    Prasad R. and Kumar A. (2005). J. Electroanal. Chem. 576: 295 CrossRefGoogle Scholar
  21. 21.
    Kim D. and Osuka A. (2003). Phys. Chem. A 107: 42 Google Scholar
  22. 22.
    Schramm C.J. and Hoffman B.M. (1980). Inorg. Chem. 19: 383 CrossRefGoogle Scholar
  23. 23.
    Sullivan B.P., Salmon D.J. and Meyer T.J. (1978). Inorg. Chem. 17: 3334 CrossRefGoogle Scholar
  24. 24.
    Bruce M.I. and Windsor N.J. (1977). Aust. J. Chem. 30: 1601 CrossRefGoogle Scholar
  25. 25.
    Gouterman M. (1978). D. Dolphin (eds) The Porphyrins, Part A. Vol. III, pp 1. Academic Press, New York Google Scholar
  26. 26.
    Kadish K.M., Royal G., VanCaemelbecke E. and Gueletti L. (2000). Smith, K.M. and Guillard, R. (eds) The Porphyrin Handbook., pp 1. Academic Press, New York, Vol 9Google Scholar
  27. 27.
    S. Belviso, G. Ricciardi, F. Lelj, L.M. Scolaro, A. Bencini and C. Carbonera, J. Chem. Soc. Dalton Trans., 1143 (2001).Google Scholar
  28. 28.
    Lange S.J., Nie H., Stern C.L., Barrett A.G.M. and Hoffman B.M. (1998). Inorg. Chem. 37: 6435 CrossRefGoogle Scholar
  29. 29.
    Toyama M.M., Franco M., Catalani L.H., Araki K. and Toma H.E. (1998). J. Photochem. Photobiol. A 118: 11 CrossRefGoogle Scholar
  30. 30.
    Yildiz G., Akkus H. and Gul A. (2001). Monatsh. Chem. 132: 659 Google Scholar
  31. 31.
    Ough E.A., Creber K.A.M. and Stillman M.J. (1996). Inorg. Chim. Acta 246: 361 CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.School of Chemical SciencesThe University of the South PacificSuvaFiji

Personalised recommendations