Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetics and mechanism of vanadium(IV) oxidation by tetrabutylammonium tribromide

  • 84 Accesses

  • 3 Citations


The reaction between tetrabutylammonium tribromide(TBATB) and vanadium(IV) has been studied in 50% (v/v) acetic acid under second order conditions. The overall order of reaction is found to be two, unity in each reactant. The reaction involves two single-electron transfer steps generating bromine free radical in the first rate determining step. The test for the formation of free radicals in presence of added acrylonitrile was negative while added toluene increases the rate of the reaction considerably due to its conversion into benzyl bromide. The reaction is retarded by hydrogen ions as a result of protonation prior equilibria of the active reductant, vanadyl acetate. The oxidation of the vanadylsalen complex by TBATB proceeds more rapidly than that of vanadyl acetate but follows the similar kinetic behaviour. Considerable decrease in the entropy of activation of the reaction indicates formation of an ordered transition state between the two reactants and since the kinetic behaviour remains unaltered, even after the change in the ligand attached to the reductant, indicates an interaction between the reactants through the oxygen atom on the vanadyl ion.

This is a preview of subscription content, log in to check access.


  1. 1.

    Gosain J. and Sharma P.K. (2002). Indian J. Chem. 41A: 321

  2. 2.

    J. Gosain and P.K. Sharma, Proc. Indian Acad. Sci. (Chem. Sci.), 115, 135 (2003).

  3. 3.

    Kar G., Saikia A.K., Bora U., Dehury S.K. and Chaudhuri M.K. (2003). Tetrahedron Lett. 44: 4503

  4. 4.

    Shukla R., Sharma P.K. and Banerji K.K. (2004). J. Chem. Sci. 116: 101

  5. 5.

    Berthelot J., Guette C., Essayeyegh M., Desbene P.L. and Basselier J.J. (1986). Synth. Commun. 16: 1641

  6. 6.

    Chaudhuri M.K., Khan A.T. and Patel B.K. (1998). Tetrahedron Lett. 39: 8163

  7. 7.

    Bora U., Chaudhuri M.K., Dey D. and Dhar S.S. (2001). Pure Appl. Chem. 73: 93

  8. 8.

    Rothenberg G. and Clark J.H. (2000). Green Chem. 2: 248

  9. 9.

    Butler A. and Carter-Franklin J.N. (2004). Nat. Prod. Rep. 21: 180

  10. 10.

    Nair V., Panicker S.B., Augustine A., George T.G., Thomas S. and Vairmani M. (2001). Tetrahedron 57: 7417

  11. 11.

    Kalantre V.A. and Gokavi G.S. (2005). Indian J. Chem. 44A: 2048

  12. 12.

    Kalantre V.A. and Gokavi G.S. (2006). Oxidation Commun. 29: 385

  13. 13.

    Kajigaeshi S., Kakinami T., Okamoto T. and Fujisaki S. (1987). Bull. Chem. Soc. Jpn. 60: 1159

  14. 14.

    Verquin G., Fontaine G., Bria M. and Bernier J.L. (2004). J. Biol. Inorg. Chem. 9: 345

  15. 15.

    M. Baghmar and P.K. Sharma, Proc. Indian. Acad. Sci.(Chem. Sci.), 113, 139 (2001).

  16. 16.

    A.K. Bradfield, B. Jones and K.J.P. Orton, J. Chem. Soc., 2810 (1929).

  17. 17.

    Selbin J. (1965). Chem. Rev. 65: 153

  18. 18.

    Carter P.R. and Davidson N. (1952). J. Phys. Chem. 56: 877

  19. 19.

    Butler A. and Carter-Franklin J.N. (2004). Nat. Prod. Rep. 21: 180

  20. 20.

    Sasajima Y., Shimizu M., Kuroyanagi N., Kishikawa N., Noda K., Itoh S., Takagi H.D. and Inamo M. (2006). Inorg. Chim. Acta 359: 346

Download references

Author information

Correspondence to Gavisiddappa S. Gokavi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalantre, V.A., Maradur, S.P. & Gokavi, G.S. Kinetics and mechanism of vanadium(IV) oxidation by tetrabutylammonium tribromide. Transition Met Chem 32, 214–218 (2007). https://doi.org/10.1007/s11243-006-0149-3

Download citation


  • Salen
  • Benzyl Bromide
  • Tribromide
  • HOBr
  • Acetic Acid Content