Advertisement

Transition Metal Chemistry

, Volume 31, Issue 5, pp 580–585 | Cite as

X-ray Crystal Structure of the N-(2-hydroxy-1-naphthalidene)phenylglycine Schiff Base. Synthesis and Characterization of its Transition Metal Complexes

  • Kalagouda B. GudasiEmail author
  • Manjula S. Patil
  • Ramesh S. Vadavi
  • Rashmi V. Shenoy
  • Siddappa A. Patil
  • Munirathinam Nethaji
Article

Abstract

The design and synthesis of the new amino acid Schiff base, N-(2-hydroxy-1-naphthalidene)phenylglycine (Hhnpg) has been described along with the single crystal X-ray crystallographic studies. Copper(II), nickel(II), cobalt(II), manganese(II) and zinc(II) complexes of Hhnpg were synthesized for the first time, and were characterized on the basis of elemental analysis, conductivity measurements, spectral (i.r., 1H-n.m.r., u.v.–vis., e.p.r.), magnetic and thermal studies. The i.r. spectral studies of all the complexes exhibit a similar feature about the ligating nature of the ligand to the metal ions and reveal that the ligand has coordinated through the carbonyl oxygen, azomethine nitrogen and deprotonated hydroxyl oxygen. The conductance data of the complexes suggest them to be non-electrolytes. The microbial activity of the ligand and the complexes was investigated.

Keywords

EtOH Schiff Base Phenyl Ring Octahedral Geometry TCNE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chohan, Z.H., Praveen, M., Ghaffar, A. 1998Synth. React. Inorg. Met. Org. Chem.281673Google Scholar
  2. 2.
    Lonibala, R.K., Rao, T.R. 1999Proc. Ind. Acad. Sci. (Chem.Sci.).111615CrossRefGoogle Scholar
  3. 3.
    Aly, G.Y., Rabia, M.K.M., Al-Mohanna, M.A.F. 2004Synth. React. Inorg. Met. Org. Chem.3445CrossRefGoogle Scholar
  4. 4.
    Rabia, M.K.M., Aly, G.Y., Al-Mohanna, M.A.F. 2004Synth. React. Inorg. Met.-Org. Chem.341651CrossRefGoogle Scholar
  5. 5.
    Dey, K. 1974J. Sci. Ind. Res.3376Google Scholar
  6. 6.
    J.M. Lassaletta, M. Alcarazo and R. Fernáandez, Chem. Comm., 298 (2004).Google Scholar
  7. 7.
    Vogel, A.I. 1969A Text Book of Quantitative Inorganic Analysis’3ELBS LongmanLondonGoogle Scholar
  8. 8.
    G.M. Sheldrick, SHELXS97, Program for the Solution of Crystal Structures, University of Göttingen, 1997.Google Scholar
  9. 9.
    Aminabhavi, T.M., Biradar, N.S., Patil, S.B., Hoffman, D.E., Biradar, N.N. 1987Inorg. Chim. Acta135139CrossRefGoogle Scholar
  10. 10.
    Venkateswara Rao, P., Rama Rao, N., Ganorkar, M.C. 1988Ind. J. Chem.27A160Google Scholar
  11. 11.
    Wyrzykiewicz, E.P. 1998J. Het. Chem.35381CrossRefGoogle Scholar
  12. 12.
    D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques, Orient Longman Limited, © Universities Press (India) Limited (2001).Google Scholar
  13. 13.
    Farmer, R.L., Urbach, F.L. 1974Inorg. Chem.13587CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kalagouda B. Gudasi
    • 1
  • Manjula S. Patil
    • 1
  • Ramesh S. Vadavi
    • 1
  • Rashmi V. Shenoy
    • 1
  • Siddappa A. Patil
    • 1
  • Munirathinam Nethaji
    • 2
  1. 1.Department of ChemistryKarnatak UniversityDharwadIndia
  2. 2.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations