Solute Dispersion of Organic Compounds on Undisturbed Soil Columns

  • Ramile Gomes Uzêda Sousa
  • Iara Brandão de Oliveira
  • Sandro Lemos MachadoEmail author
  • Miriam de Fátima Carvalho


Results of column tests performed on large undisturbed samples are presented, focusing on the behavior of the hydrodynamic dispersion coefficient (\(D_h\)). Tests were performed employing petroleum produced water from onshore facilities percolating sandy soils with different fine contents. To measure the organic content of the produced water, this work used the parameter TPH (total petroleum hydrocarbons). The obtained results show that the longitudinal dispersion coefficient (\(\alpha _L\)) varies with flow velocity (\(v_s\)) and that both the ratio between the hydrodynamic dispersion and diffusion coefficients (\(D_h/D\)) and \(\alpha _L\) are approximately two orders of magnitude higher than the values normally found in the literature for the same type of soil. This is probably related to the fact that the organic compounds measured by TPH in the produced water are partially in dissolved form, but dispersed particles are also transported by water flow, increasing the experimental values of \(D_h\).


Column tests Dispersion Petroleum produced water 



  1. ABNT-NBR-6459: Solo—Determinação do limite de liquidez, technical report, ABNT, Rio de Janeiro (1984)Google Scholar
  2. ABNT-NBR-6508: Grãos de solos que passam na peneira de 4, 8 mm—Determinação da massa específica, technical report, ABNT, Rio de Janeiro (1984)Google Scholar
  3. ABNT-NBR-7180: Solo—Determinação do limite de plasticidade, technical report, ABNT, Rio de Janeiro (1984)Google Scholar
  4. ABNT-NBR-7181: Soil—Grain size analysis (in Portuguese), technical report, ABNT, Rio de Janeiro (2016)Google Scholar
  5. Aggelopoulos, C.A., Tsakiroglou, C.D.: The longitudinal dispersion coefficient of soils as related to the variability of local permeability. Water Air. Soil Pollut. 185(1–4), 223–237 (2007)CrossRefGoogle Scholar
  6. Almeida, V., Machado, S.: Desenvolvimento de aparato para coleta de amostras indeformadas de grandes dimensões. In: XVIII Congr. Bras. Mecânica dos Solos e Eng. Geotécnica, (Belo Horizonte), pp. 1–7 (2016)Google Scholar
  7. Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, INC, New York (1988)Google Scholar
  8. Bear, J., Cheng, A.H.: Modeling Groudwater Flow and Contaminant Transport. Springer, Berlin (2010)CrossRefGoogle Scholar
  9. Berkowitz, B., Dror, I., Yaron, E.B.: Contaminant Geochemistry. Springer, Berlin (2008)CrossRefGoogle Scholar
  10. Brenner, H., Edwards, D.A.: Macrotransport Processes. Butterworth-Heinemann, Oxford (1993)Google Scholar
  11. Cheryan, M., Rajagopalan, N.: Membrane processing of oily streams. Wastewater treatment and waste reduction. J. Membr. Sci. 151(1), 13–28 (1998)CrossRefGoogle Scholar
  12. Chrysikopoulos, C.V., Katzourakis, V.E.: Colloid particle size-dependent dispersivity. Water Resour. Res. 51(6), 4668–4683 (2015) CrossRefGoogle Scholar
  13. Curtin, D., Steppuhn, H., Selles, F.: Clay dispersion in relation to sodicity, electrolyte concentration, and mechanical effects. Soil Sci. Soc. Am. J. 58(3), 955–962 (1994)CrossRefGoogle Scholar
  14. Delgado, J.M.P.Q.: Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 85(A9), 1245–1252 (2007)CrossRefGoogle Scholar
  15. Embrapa Solos-UEP Recife: Levantamento Exploratório-Reconhecimento de Solos do Estado do Rio Grande do Norte, technical report, Recife-PE (1971)Google Scholar
  16. EPA-SW-846: Test Method 6200: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment, technical report (2007)Google Scholar
  17. Feitosa, F.A.C., Filho, J.M., Feitosa, E.C., Demetrio, J.G.A.: Hidrogeologia Conceitos e aplicações. Rio de Janeiro: CPRM, 3 edn (2008)Google Scholar
  18. Freeze, R.A., Cherry, J.A.: Groundwater. Prentice-Hall, Englewood Cliffs (1979)Google Scholar
  19. Ghosh, N.C., Sharma, K.D.: Groundwater Modelling and Management. Capital Pub, New Delhy (2009)Google Scholar
  20. Gustafson, J.B.: Selection of Representative TPH Fractions Based on Fate and Transport Considerations. Amherst Scientific Publishers, Amherst (1997)Google Scholar
  21. Hunt, A.G., Skinner, T.E., Ewing, R.P., Ghanbarian-Alavijeh, B.: Dispersion of solutes in porous media. Eur. Phys. J. B 80(4), 411–432 (2011)CrossRefGoogle Scholar
  22. Lima, F.A.L.V.: Transporte de contaminantes oriundos da água de produção da indústria petrolífera em solos areno-argilosos compactados. PhD thesis, Universidade Federal da Bahia, Salvador (2018)Google Scholar
  23. Lima, F.A.L.V., Machado, S.L.: Compacted soil hydraulic behaviour during the percolation of petroleum produced water. J. Environ. Eng. Sci. 14, 1–12 (2019)CrossRefGoogle Scholar
  24. Momper, J.A.: Oil Migration Limitations Suggested by Geological and Geochemical Considerations. AAPG Special Volumes, CN 8 (1978)Google Scholar
  25. Nezhad, M.M.: Stochastic Finite Element Modelling of Flow and Solute Transport in Dual Domain System. PhD thesis, University of Exeter, Exeter (2010a)Google Scholar
  26. Nezhad, M.M., Javadi, A.A., Rezania, M.: Modeling of contaminant transport in soils considering the effects of micro- and macro-heterogeneity. J. Hydrol. 404(3–4), 332–338 (2011a)CrossRefGoogle Scholar
  27. Nezhad, M.M., Javadi, A .A., Abbasi, F.: Stochastic finite element modelling of water flow in variably saturated heterogeneous soils. Int. J. Numer. Anal. Methods Geomech. 35, 1389–1408 (2011b)CrossRefGoogle Scholar
  28. Nezhad, M.M., Rezania, M., Baioni, E.: Transport in Porous Media with Nonlinear Flow Condition. Transp. Porous Media 126(1), 5–22 (2019)CrossRefGoogle Scholar
  29. Ogata, A., Banks, R.B.: A solution of the differential equation of longitudinal dispersion in porous media, technical report (1961)Google Scholar
  30. Parker, J.C.: Multiphase flow and transport in porous media. Rev. Geophys. 27(3), 311–328 (1989)CrossRefGoogle Scholar
  31. Perkins, T.K., Johnston, O.C.: A review of diffusion and dispersion in porous media. Soc. Pet. Eng. 3(1), 70–84 (1963)CrossRefGoogle Scholar
  32. Rowell, D.L., Payne, D., Ahmad, N.: The effect of the concentration and movement of solutions on the swelling, dispersion, and movement of clay in saline and alkali soils. J. Soil Sci. 20, 176–188 (1969)CrossRefGoogle Scholar
  33. Rudraiah, N., Siddheshwar, P., Pal, D., Vortmeyer, D.: Non-Darcy effects on transient dispersion in porous media. Am. Soc. Mech. Eng. Heat Transf. Div. HTD 96, 623–628 (1988)Google Scholar
  34. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley, New York (2011)CrossRefGoogle Scholar
  35. Sato, T., Tanahashi, H., Loáiciga, H.A.: Solute dispersion in a variably saturated sand. Water Resour. Res. 39(6), 1–7 (2003)CrossRefGoogle Scholar
  36. Shackelford, C.D.: Critical concepts for column testing. J. Geotech. Eng. 120(10), 1804–1828 (1994)CrossRefGoogle Scholar
  37. Shackelford, C.D.: The ISSMGE Kerry Rowe Lecture: the role of diffusion in environmental geotechnics. Can Geotech. J. 51(11), 1219–1242 (2014). CrossRefGoogle Scholar
  38. Shivakumar, P.N., Rudraiah, N., Pal, D., Siddheshwar, P.G.: Closed form solution for unsteady convective diffusion in a fluid-saturated sparsely packed porous medium. Int. Commun. Heat Mass Transf. 14(2), 137–145 (1987)CrossRefGoogle Scholar
  39. Tahar, J.A.-D.: Contribution à l’étude des deplacement par fluides miscibles dans les milieux poreux. PhD thesis, Université de Lille (1970)Google Scholar
  40. Tien, C., Payatakes, A.C.: Advances in deep bed filtration. AIChE J. 25(5), 737–759 (1979)CrossRefGoogle Scholar
  41. Tobiason, J.E., O’Melia, C.R.: Physicochemical aspects of particle removal in depth filtration. J. Am. Water Work. Assoc. 80(12), 54–64 (1988)CrossRefGoogle Scholar
  42. Van Genuchten, M.T., Alves, W.J.: Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation, Technical Report (1982)Google Scholar
  43. Yao, K.M., Habibian, M.T., O’Melia, C.R.: Water and waste water filtration: concepts and applications. Environ. Sci. Technol. 5(11), 1105–1112 (1971)CrossRefGoogle Scholar
  44. Zhang, Y., Person, M., Merino, E.: Hydrologic and geochemical controls on soluble benzene migration in sedimentary basins. Geofluids 5(2), 83–105 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Materials Science and TechnologyFederal University of BahiaSalvadorBrazil
  2. 2.Department of Environmental and Sanitary EngineeringFederal University of BahiaSalvadorBrazil

Personalised recommendations