Advertisement

Linking Morphology of Porous Media to Their Macroscopic Permeability by Deep Learning

  • Serveh Kamrava
  • Pejman Tahmasebi
  • Muhammad SahimiEmail author
Article
  • 153 Downloads

Abstract

Flow, transport, mechanical, and fracture properties of porous media depend on their morphology and are usually estimated by experimental and/or computational methods. The precision of the computational approaches depends on the accuracy of the model that represents the morphology. If high accuracy is required, the computations and even experiments can be quite time-consuming. At the same time, linking the morphology directly to the permeability, as well as other important flow and transport properties, has been a long-standing problem. In this paper, we develop a new network that utilizes a deep learning (DL) algorithm to link the morphology of porous media to their permeability. The network is neither a purely traditional artificial neural network (ANN), nor is it a purely DL algorithm, but, rather, it is a hybrid of both. The input data include three-dimensional images of sandstones, hundreds of their stochastic realizations generated by a reconstruction method, and synthetic unconsolidated porous media produced by a Boolean method. To develop the network, we first extract important features of the images using a DL algorithm and then feed them to an ANN to estimate the permeabilities. We demonstrate that the network is successfully trained, such that it can develop accurate correlations between the morphology of porous media and their effective permeability. The high accuracy of the network is demonstrated by its predictions for the permeability of a variety of porous media.

Keywords

Porous media Morphology Stochastic modeling Deep learning 

Notes

Acknowledgements

Work at USC was supported in part by the Petroleum Research Fund, administered by the American Chemical Society. We thank an anonymous reviewer whose critical comments helped us improve the manuscript.

References

  1. Adler, P.M., Jacquin, C.G., Quiblier, J.A.: Flow in simulated porous media. Int. J. Multiph. Flow. 16, 691 (1990)CrossRefGoogle Scholar
  2. Alpaydin, E.: Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2016)Google Scholar
  3. Andreä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks—Part I: imaging and segmentation. Comput. Geosci. 50, 25 (2013)CrossRefGoogle Scholar
  4. Aramideh, S., Vlachos, P.P., Ardekani, A.M.: Pore-scale statistics of flow and transport through porous media. Phys. Rev. E 98, 013104 (2018)CrossRefGoogle Scholar
  5. Arns, C.H., Knackstedt, M.A., Pinczewski, W.M., Lindquist, W.B.: Accurate estimation of transport properties from microtomographic images. Geophys. Res. Lett. 28, 3361 (2001)CrossRefGoogle Scholar
  6. Arns, C.H., Knackstedt, M.A., Martys, N.S.: Cross-property correlations and permeability estimation in sandstone. Phys. Rev. E. 72, 046304 (2005)CrossRefGoogle Scholar
  7. Banavar, J.R., Johnson, D.L.: Characteristic pore sizes and transport in porous media. Phys. Rev. B 35, 7283 (1987)CrossRefGoogle Scholar
  8. Baruchel, J., Bleuet, P., Bravin, A., Coan, P., Lima, E., Madsen, A., Ludwig, W., Pernot, P., Susini, J.: Advances in synchrotron hard X-ray based imaging. Comptes Rendus Physique 9, 624 (2008)CrossRefGoogle Scholar
  9. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers, Hanover (2009)CrossRefGoogle Scholar
  10. Blunt, M.J.: Multiphase Flow in Permeable Media. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  11. Brandon, D., Kaplan, W.D.: Microstructural Characterization of Materials. Wiley, New York (2013)Google Scholar
  12. Caruana, R., Lawrence, S.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. Adv. Neural Inf. Process. Syst. 402(408), 13 (2001)Google Scholar
  13. Chapelle, O., Scholkopf, B., Zien, A. (eds.): Semi-supervised Learning. In: IEEE Transactions on Neural Networks, vol. 20, p. 542. IEEE (2009)Google Scholar
  14. Chen, X.W., Xiaotong, L.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514 (2014)CrossRefGoogle Scholar
  15. Chen, S., Kirubanandham, A., Chawla, N., Jiao, Y.: Stochastic multi-scale reconstruction of 3D microstructure consisting of polycrystalline grains and second-phase particles from 2D micrographs. Metall. Mater. Trans. A 47, 1440 (2016)CrossRefGoogle Scholar
  16. Daigle, H.: Application of critical path analysis for permeability prediction in natural porous media. Adv. Water Resour. 96, 43 (2016)CrossRefGoogle Scholar
  17. David, C., Gueguen, Y., Pampoukis, G.: Effective medium theory and network theory applied to the transport properties of rock. J. Geophys. Res. 95(B5), 6993 (1990)CrossRefGoogle Scholar
  18. Deng, L., Dong, Y.: Deep learning: methods and applications. Found. Trends Signal Process. 7, 197 (2014)CrossRefGoogle Scholar
  19. Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (2006)Google Scholar
  20. Doyen, P.M.: Permeability, conductivity, and pore geometry of sandstone. J. Geophys. Res. 93(B7), 7729 (1988)CrossRefGoogle Scholar
  21. Ghanbarian, B., Javadpour, F.: Upscaling pore pressure-dependent gas permeability in shales. J. Geophys. Res. Solid Earth 122, 2541 (2017)CrossRefGoogle Scholar
  22. Ghanbarian, B., Torres-Verdín, C., Skaggs, T.H.: Quantifying tight-gas sandstone permeability via critical path analysis. Adv. Water Resour. 92, 316 (2016)CrossRefGoogle Scholar
  23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)Google Scholar
  24. Hamzehpour, H., Rasaei, M.R., Sahimi, M.: Development of optimal models of porous media by combining static and dynamic data: the permeability and porosity distributions. Phys. Rev. E 75, 056311 (2007)CrossRefGoogle Scholar
  25. Jiang, Z., van Dijke, M.I.J., Sorbie, K.S., Couples, G.D.: Representation of multiscale heterogeneity via multiscale pore networks. Water Resour. Res. 49, 5437 (2013)CrossRefGoogle Scholar
  26. Jiao, Y., Stillinger, F.H., Torquato, S.: A superior descriptor of random textures and its predictive capacity. Proc. Natl. Acad. Sci. USA 106, 17634 (2009)CrossRefGoogle Scholar
  27. Jiao, Y., Padilla, E., Chawla, N.: Modeling and predicting microstructure evolution in lead/tin alloy via correlation functions and stochastic material reconstruction. Acta Mater. 61, 3370 (2013)CrossRefGoogle Scholar
  28. Johnson, M.E.: Multivariate Statistical Simulation: A Guide to Selecting and Generating Continuous Multivariate Distributions. Wiley, New York (2013)Google Scholar
  29. Johnson, D.L., Koplik, J., Schwartz, L.M.: New pore-size parameter characterizing transport in porous media. Phys. Rev. Lett. 57, 2564 (1986)CrossRefGoogle Scholar
  30. Kak, A.C., Slaney, M.S.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)Google Scholar
  31. Kamrava, S., Tahmasebi, P., Sahimi, M.: Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm. Neural Networks 118, 310 (2019)CrossRefGoogle Scholar
  32. Karimpouli, S., Tahmasebi, P.: Image-based velocity estimation of rock using convolutional neural networks. Neural Netw. 111, 89–97 (2019)CrossRefGoogle Scholar
  33. Karimpouli, S., Tahmasebi, P., Saenger, E.H.: Coal cleat/fracture segmentation using convolutional neural networks. Nat. Resour. Res. (2019).  https://doi.org/10.1007/s11053-019-09536-y CrossRefGoogle Scholar
  34. Katz, A.J., Thompson, A.H.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34, 8179 (1986)CrossRefGoogle Scholar
  35. Katz, A.J., Thompson, A.H.: Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res. B 92, 599 (1987)CrossRefGoogle Scholar
  36. Kim, K.G.: Deep learning. Health Inform. Res. 22, 351 (2016)CrossRefGoogle Scholar
  37. Kinney, J.H., Nichols, M.C.: X-ray tomographic microscopy (XTM) using synchrotron radiation. Annu. Rev. Mater. Sci. 22, 121 (1992)CrossRefGoogle Scholar
  38. Koplik, J., Lin, C., Vermette, M.: Conductivity and permeability from microgeometry. J. Appl. Phys. 56, 3127 (1984)CrossRefGoogle Scholar
  39. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)CrossRefGoogle Scholar
  40. Maturana, D., Scherer, S.: 3D convolutional neural networks for landing zone detection from LiDAR. In: IEEE International Conference on Robotics and Automation, IEEE (2015)Google Scholar
  41. Mosser, L., Dubrule, O., Blunt, M.J.: Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys. Rev. E 96, 043309 (2017)CrossRefGoogle Scholar
  42. Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic reconstruction of an oolitic limestone by generative adversarial networks. Transp. Porous Media 125, 81 (2018)CrossRefGoogle Scholar
  43. Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45, 103 (2013)CrossRefGoogle Scholar
  44. Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Trace analysis for fracture networks with anisotropic orientations and heterogeneous distributions. Phys. Rev. E 83, 031104 (2011)CrossRefGoogle Scholar
  45. Mukhopadhyay, S., Sahimi, M.: Calculation of the effective permeabilities of field-scale porous media. Chem. Eng. Sci. 55, 4495 (2000)CrossRefGoogle Scholar
  46. Nielsen, M.A.: Neural networks and deep learning (2015). http://static.latexstudio.net/article/2018/ 0912/neuralnetworksanddeeplearning.pdf
  47. Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70, 066135 (2004)CrossRefGoogle Scholar
  48. Prodanović, M., Mehmani, A., Sheppard, A.P.: Imaged-based multiscale network modelling of microporosity in carbonates. Geol. Soc. Lond. Spec. Publ. 406, 95–113 (2015)CrossRefGoogle Scholar
  49. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434v2 [cs.LG] (7 Jan. 2016)Google Scholar
  50. Remy, N., Alexandre, B., Jianbing, W.: Applied Geostatistics with SGeMS: A User’s Guide. Cambridge University Press, London (2009)CrossRefGoogle Scholar
  51. Revil, A., Cathles, L.M.: Permeability of shaly sands. Water Resour. Res. 35, 651 (1999)CrossRefGoogle Scholar
  52. Richesson, S., Sahimi, M.: Hertz–Mindlin theory of contacting grains and the effective-medium approximation for the permeability of deforming porous media. Geophys. Res. Lett. 46, 8034 (2019)CrossRefGoogle Scholar
  53. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747v2 (2017)Google Scholar
  54. Sahimi, M.: Heterogeneous Materials I. Springer, New York (2003)Google Scholar
  55. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley-VCH, Weinheim (2011)CrossRefGoogle Scholar
  56. Schittenkopf, C., Deco, G., Brauer, W.: Two strategies to avoid overfitting in feedforward networks. Neural Netw. 10, 505 (1997)CrossRefGoogle Scholar
  57. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85 (2015)CrossRefGoogle Scholar
  58. Skaggs, T.H.: Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks. Adv. Water Resour. 34, 1335 (2011)CrossRefGoogle Scholar
  59. Sola, J., Sevilla, J.: Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 44, 1464 (1997)CrossRefGoogle Scholar
  60. Srivastava, N., Hinton, G., Krizhevsky, A., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929 (2014)Google Scholar
  61. Tahmasebi, P., Kamrava, S.: Rapid multiscale modeling of flow in porous media. Phys. Rev. E 98, 052901 (2018)CrossRefGoogle Scholar
  62. Tahmasebi, P., Sahimi, M.: Reconstruction of three-dimensional porous media using a single thin section. Phys. Rev. E 85, 066709 (2012)CrossRefGoogle Scholar
  63. Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. Phys. Rev. Lett. 110, 078002 (2013)CrossRefGoogle Scholar
  64. Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 1. Graph theory and pattern adjustment. Water Resour. Res. 52, 2074 (2016a)CrossRefGoogle Scholar
  65. Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling: 2. Iterative simulation and multiple distance function. Water Resour. Res. 52, 2099 (2016b)CrossRefGoogle Scholar
  66. Tahmasebi, P., Sahimi, M., Caers, J.: MS-CCSIM: accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space. Comput. Geosci. 67, 75 (2014)CrossRefGoogle Scholar
  67. Tahmasebi, P., Javadpour, F., Sahimi, M.: Multiscale and multiresolution modeling of shales and their flow and morphological properties. Sci. Rep. 5, 16373 (2015)CrossRefGoogle Scholar
  68. Tahmasebi, P., Javadpour, F., Sahimi, M.: Data mining and machine learning for identifying sweet spots in shale reservoirs. Expert Syst. Appl. 88, 435 (2017)CrossRefGoogle Scholar
  69. Thompson, A.H.: Fractals in rock physics. Annu. Rev. Earth Planet. Sci. 19, 237 (1991)CrossRefGoogle Scholar
  70. Thovert, J.F., Yousefian, F., Spanne, P., Jacquin, C.G., Adler, P.M.: Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. Phys. Rev. E 63, 061307 (2001)CrossRefGoogle Scholar
  71. van der Linden, J.H., Narsilio, G.A., Tordesillas, A.: Machine learning framework for analysis of transport through complex networks in porous, granular media: a focus on permeability. Phys. Rev. E 94, 022904 (2016)CrossRefGoogle Scholar
  72. Wu, Z., Jiang, Y.-G., Wang, J., Pu, J., Xue, X.: Exploring inter-feature and inter-class relationships with deep neural networks for video classification. In: Proceedings of the ACM International Conference on Multimedia - MM14 (2014)Google Scholar
  73. Xu, P., Yu, B.: Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31, 74 (2008)CrossRefGoogle Scholar
  74. Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. Springer, Berlin (2015)CrossRefGoogle Scholar
  75. Yang, Z., Yabansu, Y.C., Al-Bahrani, R., Liao, W., Choudhary, A.N., Kalidindi, S.R., Agrawal, A.: Deep learning approaches for mining structure–property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151, 278 (2018)CrossRefGoogle Scholar
  76. Yang, Z., Yabansu, Y.C., Jha, D., Liao, W., Choudhary, A.N., Kalidindi, S.R., Agrawal, A.: Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater. 166, 335 (2019)CrossRefGoogle Scholar
  77. Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 57, 495 (1998a)CrossRefGoogle Scholar
  78. Yeong, C.L.Y., Torquato, S.: Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 58, 224 (1998b)CrossRefGoogle Scholar
  79. Zachary, C.E., Torquato, S.: Improved reconstructions of random media using dilation and erosion processes. Phys. Rev. E 84, 056102 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Serveh Kamrava
    • 1
  • Pejman Tahmasebi
    • 2
  • Muhammad Sahimi
    • 1
    Email author
  1. 1.Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Petroleum EngineeringUniversity of WyomingLaramieUSA

Personalised recommendations