Advertisement

Transport in Porous Media

, Volume 130, Issue 3, pp 889–902 | Cite as

Effect of Characteristic Time on Scaling of Breakthrough Time Distribution for Two-Phase Displacement in Percolation Porous Media

  • Sara Shokrollahzadeh Behbahani
  • Mohsen MasihiEmail author
  • Mohammad Hossein Ghazanfari
  • Peter R. King
Article
  • 46 Downloads

Abstract

Determining the time of breakthrough of injected water is important when assessing waterflood in an oil reservoir. Breakthrough time distribution for a passive tracer (for example water) in percolation porous media (near the percolation threshold) gives insights into the dynamic behavior of flow in geometrically complex systems. However, the application of such distribution to realistic two-phase displacements can be done based on scaling of all parameters. Here, we propose two new approaches for scaling of breakthrough time (characteristic times) in two-dimensional flow through percolation porous media. The first is based on the flow geometry, and the second uses the flow parameters of a representative homogenous model. We have tested the effectiveness of these two approaches using a large number of dynamic simulations. The results show significant improved distribution curves for the breakthrough (transit) time between an injector and a producer located in a heterogeneous porous medium in comparison with the previous scaling methods.

Keywords

Percolation theory Dynamic reservoir simulation Waterflood Breakthrough time 

Notes

References

  1. Amaefule, J.O., Altunbay, M., Tiab, D., Kersey, D.G., Keelan, D.K.: Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In: SPE Annual Technical Conference and Exhibition, 3-6 October, Houston, Texas (1993).  https://doi.org/10.2118/26436-ms
  2. Amaziane, B., Milisic, J.P., Panfilov, M., Pankratov, L.: Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media. Phys. Rev. E 85, 016304 (2012).  https://doi.org/10.1103/PhysRevE.85.016304 CrossRefGoogle Scholar
  3. Andrade, J.S., Buldyrev, S.V., Dokholyan, N.V., Havlin, S., King, P.R., Lee, Y., Paul, G., Stanley, H.E.: Flow between two sites on a percolation cluster. Phys. Rev. E 62(6), 8270–8281 (2000).  https://doi.org/10.1103/PhysRevE.62.8270 CrossRefGoogle Scholar
  4. Andrade, J.S., Araujo, A.D., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Dynamics of viscous penetration in percolation porous media. Phys. Rev. E 63, 051403 (2001).  https://doi.org/10.1103/PhysRevE.63.051403 CrossRefGoogle Scholar
  5. Ansari, A.R.,  Bradley, R.A.: Rank-sum tests for dispersions. Ann. Math. Stat. 31 (4), 1174–1189 (1960).  https://doi.org/10.1214/aoms/1177705688.CrossRefGoogle Scholar
  6. Aramideh, S., Vlachos, P.P., Ardekani, A.M.: Pore-scale statistics of flow and transport through porous media. Phys. Rev. E 98, 013104 (2018).  https://doi.org/10.1103/PhysRevE.98.013104 CrossRefGoogle Scholar
  7. Araujo, A.D., Moreira, A.A., Makse, H.A., Stanley, H.E., Andrade, J.S.: Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations. Phys. Rev. E (2002).  https://doi.org/10.1103/PhysRevE.66.046304 CrossRefGoogle Scholar
  8. Archer, J.S., Wong, S.W.: Use of a reservoir simulator to interpret laboratory waterflood data. SPE J. 13(6), 343–347 (1973).  https://doi.org/10.2118/3551-PA CrossRefGoogle Scholar
  9. Ball, R.C., Havlin, S., Weiss, G.H.: Non-Gaussian random walks. J. Phys. A Math. Gen. 20(12), 4055–4059 (1987).  https://doi.org/10.1088/0305-4470/20/12/052 CrossRefGoogle Scholar
  10. Blunt, M.J.: Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface 6(3), 197–207 (2001).  https://doi.org/10.1016/S1359-0294(01)00084-X CrossRefGoogle Scholar
  11. Bouchaud, J.P., Bouchaud, E., Lapasset, G., Planes, J.: Models of fractal cracks. Phys. Rev. Lett. 71, 2240 (1993).  https://doi.org/10.1103/PhysRevLett.71.2240 CrossRefGoogle Scholar
  12. Broadbent, S., Hammersley, J.M.: Percolation processes: I. Crystals and mazes. Math. Proc. Camb. Philos. Soc. 53(3), 629–641 (1957).  https://doi.org/10.1017/s0305004100032680 CrossRefGoogle Scholar
  13. Bultreys, T., Lin, Q., Gao, Y., Eaeini, A.Q., Alratrout, A., Bijeljic, B., Blunt, M.J.: Validation of model predictions of pore-scale fluid distributions during two-phase flow. Phys. Rev. E 97, 053104 (2018).  https://doi.org/10.1103/physreve.97.053104 CrossRefGoogle Scholar
  14. Chatsiz, L., Dullien, F.A.L.: The modeling of mercury porosimetry and the relative permeability of mercury in sandstones using percolation theory. Int. Chem. Eng. 25(1) (1985)Google Scholar
  15. Craig, F.F., Geffen, T.M., Morse, R.A.: Oil recovery performance of pattern gas or water injection operations from model tests. SPE J. 204, 7–15 (1955)Google Scholar
  16. Deustch, C.: Calculating effective absolute permeability in sandstone/shale sequences. SPE Form. Eval. 4(3), 343–348 (1989).  https://doi.org/10.2118/17264-PA CrossRefGoogle Scholar
  17. Dokholyan, N.V., Buldyrev, S.V., Havlin, S., King, P.R., Lee, Y., Stanley, H.E.: Distribution of shortest paths in percolation. Phys. Rev. A 266(1–4), 55–61 (1999).  https://doi.org/10.1016/S0378-4371(98)00574-3 CrossRefGoogle Scholar
  18. Dokholyan, N.V., Lee, Y., Bulydrev, S.V., Havlin, S., King, P.R., Stanley, H.E.: Scaling of the distribution of shortest paths in percolation. J. Stat. Phys. 93(3–4), 603–613 (1998).  https://doi.org/10.1023/b:joss.0000033244.13545.da CrossRefGoogle Scholar
  19. Dyes, A.B., Caudle, B.H., Erickson, R.A.: Oil production after breakthrough as influenced by mobility ratio. J. Pet. Technol. 6(4), 27–32 (1954).  https://doi.org/10.2118/309-G CrossRefGoogle Scholar
  20. Eclipse (2015) Eclipse reference manual, version 2015, SchlumbergerGoogle Scholar
  21. Flory, P.J.: Molecular size distribution in three dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63(11), 3083–3090 (1941).  https://doi.org/10.1021/ja01856a061 CrossRefGoogle Scholar
  22. Freedman, D., Diaconis, P.: On the histogram as a density estimator: L2 theory. Z. Wahrscheinlichkeitstheorie verw. Gebiete 57(4), 453–476 (1981).  https://doi.org/10.1007/BF01025868 CrossRefGoogle Scholar
  23. Gago, P.A., King, P.R., Muggeridge, A.: Fractal growth model for estimating breakthrough time and sweep efficiency when waterflooding geologically heterogeneous rocks. Phys. Rev. Appl. 10, 034003 (2018).  https://doi.org/10.1103/PhysRevApplied.10.034003 CrossRefGoogle Scholar
  24. Ganjeh-Ghazvini, M., Masihi, M., Ghaedi, M.: Random walk-percolation-based modeling of two-phase flow in porous media: breakthrough time and net to gross ratio estimation. Phys. A Stat. Mech. Appl. 406, 214–221 (2014).  https://doi.org/10.1016/j.physa.2014.03.051 CrossRefGoogle Scholar
  25. Grassberger, P.: Numerical studies of critical percolation in three dimensions. J. Phys. A Math. Gen. 25(22), 5867 (1989).  https://doi.org/10.1088/0305-4470/25/22/015 CrossRefGoogle Scholar
  26. Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phys. 36(6), 695–798 (1987).  https://doi.org/10.1080/00018738700101072 CrossRefGoogle Scholar
  27. Herrman, H.J., Stanley, H.E.: The fractal dimension of the minimum path in two- and three-dimensional percolation. J. Phys. A Math. Gen. 21(17), L829 (1988).  https://doi.org/10.1088/0305-4470/21/17/003 CrossRefGoogle Scholar
  28. Hovadik, J.M., Larue, D.K.: Static characterizations of reservoirs: refining the concepts of connectivity and continuity. Pet. Geosci. 13, 195–211 (2007).  https://doi.org/10.1144/1354-079305-697 CrossRefGoogle Scholar
  29. Hu, Y., Gan, Q., Hurst, A., Elsworth, D.: Evolution of permeability in sand injectite systems. Int. J. Rock Mech. Min. Sci. 106, 176–189 (2018).  https://doi.org/10.1016/j.ijrmms.2018.04.018 CrossRefGoogle Scholar
  30. Hunt, A., Ewing, R.: Percolation theory: topology and structure. Lect. Notes Phys. 771, 1–36 (2009).  https://doi.org/10.1007/978-3-540-89790-3_1 CrossRefGoogle Scholar
  31. Katz, A.J., Thompson, A.H.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54, 1325 (1985).  https://doi.org/10.1103/PhysRevLett.54.1325 CrossRefGoogle Scholar
  32. King, P.R., Buldyrev, S.V., Dokholyan, N.V., Havlin, S., Lopez, E., Paul, G., Stanley, H.E.: Uncertainty in oil production predicted by percolation theory. Phys. A Stat. Mech. Appl. 306, 376–380 (2002).  https://doi.org/10.1016/S0378-4371(02)00515-0 CrossRefGoogle Scholar
  33. King, P.R.: The connectivity and conductivity of overlapping sand bodies. In: Buller, A.T., Berg, E., Hjelmeland, O., Kleppe, J., Torsæter, O., Aasen, J.O. (eds.) North Sea Oil and Gas Reservoirs: II, pp. 353–362. Springer, Dordrecht (1990).  https://doi.org/10.1007/978-94-009-0791-1_30 CrossRefGoogle Scholar
  34. Koplik, J., Redner, S., Wilkinson, D.: Transport and dispersion in random networks with percolation disorder. Phys. Rev. A 37(7), 2619–2636 (1988)CrossRefGoogle Scholar
  35. Koplik, J., Redner, S., Hinch, E.J.: Tracer dispersion in planar multipole flows. Phys. Rev. E 50(6), 4650–4671 (1994).  https://doi.org/10.1103/physreve.50.4650 CrossRefGoogle Scholar
  36. Landa, J.L., Guyaguler, B.: A methodology for history matching and the assessment of uncertainties associated with flow prediction. In: SPE Annual Technical Conference and Exhibition, 5–8 October, Denver, Colorado (2003).  https://doi.org/10.2118/84465-ms
  37. Lee, Y., Andrade, J.S., Buldyrev, S.V., Dokholyan, N.V., Havlin, S., King, P.R., Paul, G., Stanley, H.E.: Traveling time and traveling length in critical percolation clusters. Phys. Rev. E 60(3), 3245–3248 (1999).  https://doi.org/10.1103/PhysRevE.60.3425 CrossRefGoogle Scholar
  38. Li, W., Jensen, J.L., Ayers, W.B., Hubbard, S.M., Heidari, M.R.: Comparison of interwell connectivity predictions using percolation, geometrical, and Monte Carlo models. J. Pet. Sci. Eng. (2009).  https://doi.org/10.1016/j.petrol.2009.06.013 CrossRefGoogle Scholar
  39. Masihi, M., King, P.R.: Percolation Theory in Reservoir Engineering. World Scientific Publishing (UK) Limited, London (2018).  https://doi.org/10.1142/q0154 CrossRefGoogle Scholar
  40. Oliveira, C.L.N., Araujo, A.D., Luena, L.S., Almeida, M.P., Andrade, J.S.: Post-breakthrough scaling in reservoir field simulation. Phys. A Stat. Mech. Appl. 391, 3219–3226 (2012).  https://doi.org/10.1016/j.physa.2012.01.017 CrossRefGoogle Scholar
  41. Paterson, L., Painter, S., Knackstedt, M.A., Pinczewski, W.V.: Patterns of fluid flow in naturally heterogeneous rocks. Phys. A Stat. Mech. Appl. 223(3–4), 619–628 (1996).  https://doi.org/10.1016/S0378-4371(96)00199-9 CrossRefGoogle Scholar
  42. Ronayne, M.J., Gorelick, S.M.: Effective permeability of porous media containing branching channel networks. Phys. Rev. E 73, 026305 (2006).  https://doi.org/10.1103/PhysRevE.73.026305 CrossRefGoogle Scholar
  43. Sadeghnejad, S., Masihi, M.: Point to point continuum percolation in two dimensions. J. Stat. Mech. (2016).  https://doi.org/10.1088/1742-5468/2016/10/103210 CrossRefGoogle Scholar
  44. Sadeghnejad, S., Masihi, M., Shojaei, A., Pishvaie, M., King, P.R.: Field scale characterization of geologic formations using percolation theory. Transp. Porous Med. 92, 357–372 (2012).  https://doi.org/10.1007/s11242-011-9907-6 CrossRefGoogle Scholar
  45. Sadeghnejad, S., Masihi, M., King, P.R.: Study the connectivity of good sands between two wells represented by two points using percolation theory. In: 78th EAGE Conference and Exhibition (2016).  https://doi.org/10.3997/2214-4609.201601810
  46. Sahimi, M.: Applications of Percolation Theory. CRC Press, Boca Raton (1994)Google Scholar
  47. Scott, D.W.: On optimal and data-based histograms. Biometrika 66(3), 605–610 (1979).  https://doi.org/10.1093/biomet/66.3.605 CrossRefGoogle Scholar
  48. Soares, R.F., Corso, G., Lucena, L.S., Freitas, J.E., da Silva, L.R., Paul, G., Stanley, H.E.: Distribution of shortest paths at percolation threshold: application to oil recovery with multiple wells. Phys. A Stat. Mech. Appl. 343, 739–747 (2004).  https://doi.org/10.1016/j.physa.2004.05.050 CrossRefGoogle Scholar
  49. Stauffer, D., Amnon, A.: Introduction to Percolation Theory. Taylor and Francis, Routledge (2018).  https://doi.org/10.1201/9781315274386 CrossRefGoogle Scholar
  50. Sturges, H.A.: The choice of a class interval. J. Am. Stat. Assoc. 21(153), 65–66 (1926).  https://doi.org/10.1080/01621459.1926.10502161 CrossRefGoogle Scholar
  51. Zhang, M., Koplik, J.: Tracer dispersion in three-dimensional multipole flows. Phys. Rev. E 56(4), 4244–4258 (1997).  https://doi.org/10.1103/PhysRevE.56.4244 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sara Shokrollahzadeh Behbahani
    • 1
  • Mohsen Masihi
    • 1
    Email author
  • Mohammad Hossein Ghazanfari
    • 1
  • Peter R. King
    • 1
    • 2
  1. 1.Department of Chemical and Petroleum EngineeringSharif University of TechnologyTehranIran
  2. 2.Department of Earth Science and EngineeringImperial College LondonLondonUK

Personalised recommendations