Advertisement

Transport in Porous Media

, Volume 130, Issue 3, pp 769–797 | Cite as

Landfill Gas Flow: Collection by Horizontal Wells

  • Yana NecEmail author
  • Greg Huculak
Article
  • 55 Downloads

Abstract

Collection of landfill gas by horizontal perforated wells is studied. The problem combines flow through porous media in the landfill and unobstructed pipe flow in the well. Respective analytical solutions to flow equations are used in an iterative numerical procedure to solve the coupled system. Realistic landfill input parameters confirm the feasibility of estimates obtained with the model. The study identifies flow control parameters and furnishes tools to evaluate surface flux and radius of influence for this type of well.

Keywords

Landfill gas flow Horizontal well Multi-layer porous media Surface flux Radius of influence 

Mathematics Subject Classification

76S05 

Notes

Acknowledgements

Field data furnished by GNH Consulting Ltd., Delta, British Columbia, Canada, are gratefully acknowledged.

References

  1. Allan, F.M., Hajii, M.A., Anwar, M.N.: The characteristics of fluid flow through multilayer porous media. J. Appl. Mech. 76(1), 014501 (2008)CrossRefGoogle Scholar
  2. Bahloul, A., Yahiaoui, M.A., Vasseur, P., Bennacer, R., Beji, H.: Natural convection of a two-component fluid in porous media bounded by tall concentric vertical cylinders. J. Appl. Mech. 73(1), 26–33 (2005)CrossRefGoogle Scholar
  3. Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–167 (1937)Google Scholar
  4. Chen, Y.C., Chen, K.S., Wu, C.H.: Numerical simulation of gas flow around a passive vent in a sanitary landfill. J. Hazard. Mater. B 100, 39–52 (2003)CrossRefGoogle Scholar
  5. Colebrook, C.F.: Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civil Eng. 11, 133–156 (1939)CrossRefGoogle Scholar
  6. Davidson, T.A.: A simple and accurate method for calculating viscosity of gaseous mixtures. Report of investigations, US Department of the Interior, Bureau of Mines (1993)Google Scholar
  7. Fand, R.M., Kim, B.Y.K., Lam, A.C.C., Phan, R.T.: Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. J. Fluids Eng. 109, 268–273 (1987)CrossRefGoogle Scholar
  8. Feng, S.J., Zheng, Q.T., Xie, H.J.: A model for gas pressure in layered landfills with horizontal gas collection systems. Comput. Geotech. 68, 117–127 (2015)CrossRefGoogle Scholar
  9. Feng, S.J., Zheng, Q.T., Xie, H.J.: A gas flow model for layered landfills with vertical extraction wells. Waste Manag. 66, 101–113 (2017)CrossRefGoogle Scholar
  10. Fulks, W.B., Guenther, R.B., Roetman, E.L.: Equations of motion and continuity for fluid flow in a porous medium. Acta Mech. 12, 121–129 (1971)CrossRefGoogle Scholar
  11. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. 7th edition, In: Jeffrey, A., Zwillinger, D. (eds.) Academic Press, Elsevier; identities 8.405–8.407, 8.472, 8.477 (2007)Google Scholar
  12. Henderson, N., Brêttas, J.C., Sacco, W.F.: A three-parameter Kozeny–Carman generalized equation for fractal porous media. Chem. Eng. Sci. 65, 4432–4442 (2010)CrossRefGoogle Scholar
  13. Lage, J.L., Anthohe, B.V., Nield, D.A.: Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media. J. Fluids Eng. 119, 700–706 (1997)CrossRefGoogle Scholar
  14. Nakshatrala, K.B., Joodat, S.H.S., Ballarini, R.: Modeling flow in porous media with double porosity/permeability: mathematical model, properties and analytical solutions. J. Appl. Mech. 85(8), 081009 (2018)CrossRefGoogle Scholar
  15. Nec, Y., Huculak, G.: Solution of weakly compressible isothermal flow in landfill gas collection networks. Fluid Dyn. Res. 49, 065505 (2016)CrossRefGoogle Scholar
  16. Panda, M.N., Lake, L.W.: Estimation of single-phase permeability from parameters of particle-size distribution. Am. Assoc. Pet. Geol. Bull. 78(7), 1028–1039 (1994)Google Scholar
  17. PDE Solutions Inc: Flexpde 7. (2016). http://www.pdesolutions.com
  18. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)CrossRefGoogle Scholar
  19. Yu, L., Batlle, F., Carrera, J., Lloret, A.: Gas flow to a vertical gas extraction well in deformable MSW landfills. J. Hazard. Mater. 168, 1404–1416 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsThompson Rivers UniversityKamloopsCanada
  2. 2.GNH Consulting Ltd.DeltaCanada

Personalised recommendations