Advertisement

Comments on the Paper “Theory and Applications of Macroscale Models in Porous Media” by Ilenia Battiato et al

  • Jean-Louis AuriaultEmail author
Article
  • 25 Downloads

Abstract

In this attractive paper (Battiato et al. in Transp Porous Media, 2019), the authors review different methods of upscaling heterogeneous media descriptions to continuous macroscopic equivalent descriptions. I would like to introduce some comments to complete the presentation of the homogenisation theory in Section 7.

Keywords

Upscaling methods Homogenization theory Composite media Macroscopic model 

Notes

References

  1. Auriault, J.-L.: Heterogeneous periodic and random media. Are the equivalent macroscopic descriptions similar? Int. J. Eng. Sci. 49, 806–808 (2011)CrossRefGoogle Scholar
  2. Auriault, J.-L.: The paradox of Fourier equation: a theoretical refutation. Int. J. Eng. Sci. 81, 100–106 (2017)CrossRefGoogle Scholar
  3. Auriault, J.-L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  4. Auriault, J.-L., Ene, H.I.: Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. Int. J. Heat Mass Transf. 37(18), 2885–2892 (1994)CrossRefGoogle Scholar
  5. Battiato, I., Ferrero, P.T., O’Malley, D., Miller, C.T., Takhar, P.S., Valdés-Parada, F.J., Wood, B.D.: Theory and applications of macroscale models in porous media. Transp. Porous Media (2019).  https://doi.org/10.1007/s11242-019-01282-2
  6. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978)Google Scholar
  7. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Springer, Berlin (1980)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, 3SRGrenobleFrance
  2. 2.CNRS, 3SRGrenobleFrance

Personalised recommendations