Advertisement

Transport in Porous Media

, Volume 129, Issue 3, pp 941–953 | Cite as

The Extremum Condition of the Local Volumetric Flux for Compositional Displacements

  • Xiao Luo
  • Quoc Nguyen
  • David DiCarloEmail author
Article
  • 46 Downloads

Abstract

Compositional displacements in porous media, where chemical components partition between phases during a displacement, occur in flow processes such as surfactant flooding and gas injection. We develop a new approach to solving compositional displacements with volume change on mixing. The result is a new condition on the local volumetric flux that is equivalent to the tangent construction (condition). We demonstrate how this works by solving for the shocks for the simplest case of a two-component, two-phase system. We discuss the use of this procedure for the more general case of arbitrary volume change on mixing and arbitrary number of components.

Keywords

Compositional displacement Coherent wave Extremum condition Volume change on mixing 

List of symbols

\(\alpha _i\)

The molar flux component i normalized by the local volumetric flux (kmol/m\(^3\))

\(\eta \), \(\varLambda \)

The characteristic velocity of the composition wave and shock, respectively (m/s)

\(\lambda ^{I}\)

The mobility of phase I (1/cp)

\(\mu ^I\)

The viscosity of phase I (cp)

\(\phi \)

The porosity of the porous media (m\(^3\)/m\(^3\))

\({\underline{V}}_i\)

The molar volume of pure component i (m\(^3\)/kmol)

\({\underline{V}}_{\mathrm{sat}}^I\)

The equilibrium or saturated molar volume of phase I (m\(^3\)/kmol)

\(\xi \)

The independent spatial variable (m)

\(f^I\)

The fractional flow of phase I (m\(^3\)/m\(^3\))

\(G_i\)

The molar amount of component i per unit volume (kmol/m\(^3\))

\(H_i\)

The molar flux of component i per unit volume (kmol/m\(^2\)/s)

\(S^I\)

The saturation of phase I (m\(^3\)/m\(^3\))

t

The independent temporal variable (s)

u

The local volumetric flux (m\(^3\)/m\(^2\)/s)

V

The total pore volume in a control volume (m\(^3\))

\(x_i^I\)

The mole fraction of component i in phase I (kmol/kmol)

\(z_i\)

The overall mole fraction of component i (kmol/kmol)

\(z_i^I\)

The equilibrium or saturated mole fraction of component i in phase I (kmol/kmol)

\({k_r}^I\)

The relative permeability of phase I (m\(^2\)/m\(^2\))

\({V}^I\)

The pore volume occupied by phase I (m\(^3\))

Notes

Acknowledgements

This research was funded by the Equinor Fellowship Program.

References

  1. Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Soc. Pet. Eng. (1942).  https://doi.org/10.2118/942107-G Google Scholar
  2. Chen, X., Kianinejad, A., DiCarlo, David A.: An extended JBN method of determining unsteady state two-phase relative permeability. Water Resour. Res. 52, 8374–8383 (2016).  https://doi.org/10.1002/2016WR019204 CrossRefGoogle Scholar
  3. Claridge, E.L., Bondor, P.L.: A graphical method for calculating linear displacement with mass transfer and continuously changing mobilities. Soc. Pet. Eng. (1974).  https://doi.org/10.2118/4673-PA Google Scholar
  4. Dindoruk, B.: Analytical theory of multiphase, multicomponent displacement in porous media. Ph.D. Dissertation, Stanford University (1992)Google Scholar
  5. Dumore, J.M., Hagoort, J., Risseeuw, A.S.: An analytical model for one-dimensional, three-component condensing and vaporizing gas drives. Soc. Pet. Eng. (1984).  https://doi.org/10.2118/10069-PA Google Scholar
  6. Helfferich, F.G.: Theory of multicomponent, multiphase displacement in porous media. Soc. Pet. Eng. (1981).  https://doi.org/10.2118/8372-PA Google Scholar
  7. Hirasaki, G.J.: Application of the theory of multicomponent, multiphase displacement to three-component, two-phase surfactant flooding. Soc. Pet. Eng. (1981).  https://doi.org/10.2118/8373-PA Google Scholar
  8. Jessen, K., Wang, Y., Ermakov, P., Zhu, J., Orr, F.M.J.: Fast, approximate solutions for 1D multicomponent gas-injection problems. SPE J. 6(04), 442–451 (2001).  https://doi.org/10.2118/74700-PA. https://www.onepetro.org/journal-paper/SPE-74700-PA
  9. Johnson, E.F., Bossler, D.P., Naumann, V.O.: Calculation of relative permeability from displacement experiments Petroleum Transactions. AIME. 216, 370–372 (1959). https://www.onepetro.org/general/SPE-1023-G
  10. Lake, L.W., Johns, R.T., Rossen, W.R., Pope, G.A.: Fundamentals of enhanced oil recovery. Society of Petroleum Engineers, Richardson (2014) Google Scholar
  11. Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957).  https://doi.org/10.1002/cpa.3160100406 CrossRefGoogle Scholar
  12. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1973)CrossRefGoogle Scholar
  13. LeVeque, R.J.: Scalar conservation laws. In: LeVeque, R.J. (ed.) Numerical Methods for Conservation Laws, pp. 19–40. Basel, Birkhäuser (1992)CrossRefGoogle Scholar
  14. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  15. Liu, T.P.: The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53(1), 78–88 (1976).  https://doi.org/10.1016/0022-247X(76)90146-3 CrossRefGoogle Scholar
  16. Orr, F.M.J.: Theory of Gas Injection Processes. Tie-Line Publications, Holte (2007)Google Scholar
  17. Orr, F.M.J., Yu, A.D., Lien, C.L.: Phase behavior of CO\(_2\) and crude oil in low-temperature reservoirs. Soc. Pet. Eng. J. 21(04), 480–492 (1981).  https://doi.org/10.2118/8813-PA. https://www.onepetro.org/journal-paper/SPE-8813-PA
  18. Pope, G.A.: The application of fractional flow theory to enhanced oil recovery. Soc. Pet. Eng. (1980).  https://doi.org/10.2118/7660-PA Google Scholar
  19. Schmid, K.S., Alyafei, N., Geiger, S., Blunt, M.J.: Analytical solutions for spontaneous imbibition: fractional-flow theory and experimental analysis. Soc. Pet. Eng. (2016).  https://doi.org/10.2118/184393-PA Google Scholar
  20. Seto, C.J., Jessen, K., Orr, F.M.J.: A multicomponent, two-phase-flow model for CO\(_2\) storage and enhanced coalbed-methane recovery. Soc. Pet. Eng. (2009).  https://doi.org/10.2118/102376-PA Google Scholar
  21. Walsh, M.P., Lake, L.W.: Applying fractional flow theory to solvent flooding and chase fluids. J. Pet. Sci. Eng. 2, 281–303 (1989).  https://doi.org/10.1016/0920-4105(89)90005-3 CrossRefGoogle Scholar
  22. Wang, Y.: Analytical calculation of minimum miscibility pressure. Ph.D. thesis, Stanford University (1998)Google Scholar
  23. Welge, H.J.: A simplified method for computing oil recovery by gas or water drive. Soc. Pet. Eng. (1952).  https://doi.org/10.2118/124-G Google Scholar
  24. Wu, Y.S., Pruess, K., Chen, Z.X.: Buckley–Leverett flow in composite porous media. Soc. Pet. Eng. (1993).  https://doi.org/10.2118/22329-PA Google Scholar
  25. Yortsos, Y.C., Fokas, A.S.: An analytical solution for linear waterflood including the effects of capillary pressure. Soc. Pet. Eng. (1983).  https://doi.org/10.2118/9407-PA Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Hildebrand Department of Petroleum and Geosystems EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations