The Effect of Surface Wettability and Wall Roughness on the Residual Saturation for the Drainage Process in Sinusoidal Channels

  • Long Cheng
  • Xiaofan LiEmail author
  • Guan Rong
  • Chuangbing Zhou


The flux-driven displacement of a wetting fluid by a non-wetting fluid in two-dimensional channels with flat parallel plates and sinusoidal surfaces is investigated via a multi-relaxation time multi-component lattice Boltzmann method. The co-current flow and the capillary filling problems are used for the validation of the numerical method. The results have shown that the present method is effective in simulating the viscous and capillary forces during the displacement process. For flat parallel plates, the effect of wettability on the development of fingering flow and the relationship between the developed finger width ratio and the capillary number are investigated. The results are compared to the previous research. The fingering flow is enhanced with a strongly wetting condition and the finger width ratio decreases as the capillary number is raised. For periodic sinusoidal channels, discontinuous interfaces appear due to the roughness of channel walls. The residual behavior of the wetting displaced fluid is enhanced with the wetting condition, as a strongly wetting condition would lead to a slower contact line motion. Finally, a quantitative study of the combined effect of roughness and wettability on the residual saturation is made.


Multi-phase Displacement Channel Wettability 



The research is partially supported by China Scholarship Council (CSC), National Natural Science Foundations of China 51579189 and 41772305, the National Key Research and Development Program of China (2017YFC15013 00) and NSF-DMS 1620449.


  1. AlQuaimi, B., Rossen, W.: New capillary number definition for displacement of residual nonwetting phase in natural fractures. Geophys. Res. Lett. 44, 5368–5373 (2017)CrossRefGoogle Scholar
  2. Chen, C.-Y., Horne, R.N.: Two-phase flow in rough-walled fractures: experiments and a flow structure model. Water Resour. Res. 42, W03430 (2006)Google Scholar
  3. Chin, J.: Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan–Chen microscopic interaction model. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 360, 547–558 (2002)CrossRefGoogle Scholar
  4. Cho, S.C., Wang, Y.: Two-phase flow dynamics in a micro channel with heterogeneous surfaces. Int. J. Heat Mass Transf. 71, 349–360 (2014)CrossRefGoogle Scholar
  5. Dehghan, A., Ghorbanizadeh, S., Ayatollahi, S.: Investigating the fracture network effects on sweep efficiency during WAG injection process. Transp. Porous Media 93, 577–595 (2012)CrossRefGoogle Scholar
  6. Diotallevi, F., Biferale, L., Chibbaro, S., Lamura, A., Pontrelli, G., Sbragaglia, M., Succi, S., Toschi, F.: Capillary filling using lattice Boltzmann equations: the case of multi-phase flows. Eur. Phys. J. Spec. Top. 166, 111–116 (2009)CrossRefGoogle Scholar
  7. Dong, B., Yan, Y., Li, W., Song, Y.: Lattice Boltzmann simulation of viscous fingering phenomenon of immiscible fluids displacement in a channel. Comput. Fluids 39, 768–779 (2010)CrossRefGoogle Scholar
  8. Dou, Z., Zhou, Z., Sleep, B.: Influence of wettability on interfacial area during immiscible liquid invasion into a 3D self-affine rough fracture: lattice Boltzmann simulations. Adv. Water Resour. 61, 1–11 (2013)CrossRefGoogle Scholar
  9. Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)CrossRefGoogle Scholar
  10. Guo, Z., Zheng, C., Shi, B.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14, 2007–2010 (2002). CrossRefGoogle Scholar
  11. Halpern, D., Gaver, D.: Boundary element analysis of the time-dependent motion of a semi-infinite bubble in a channel. J. Comput. Phys. 115, 366–375 (1994)CrossRefGoogle Scholar
  12. Hazlett, R., Chen, S., Soll, W.: Wettability and rate effects on immiscible displacement: lattice Boltzmann simulation in microtomographic images of reservoir rocks. J. Pet. Sci. Eng. 20, 167–175 (1998)CrossRefGoogle Scholar
  13. He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)CrossRefGoogle Scholar
  14. Hu, R., Wan, J., Kim, Y., Tokunaga, T.K.: Wettability effects on supercritical CO\(_{2}\)-brine immiscible displacement during drainage: pore-scale observation and 3D simulation. Int. J. Greenh. Gas Control 60, 129–139 (2017)CrossRefGoogle Scholar
  15. Huang, H., Lu, X.: Relative permeabilities and coupling effects in steady-state gas-liquid flow in porous media: a lattice Boltzmann study. Phys. Fluids 21, 092104 (2009)CrossRefGoogle Scholar
  16. Huang, H., Thorne Jr., D.T., Schaap, M.G., Sukop, M.C.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)CrossRefGoogle Scholar
  17. Huang, H., Li, Z., Liu, S., Lu, X.-Y.: Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Methods Fluids 61, 341–354 (2009)CrossRefGoogle Scholar
  18. Jung, M., Brinkmann, M., Seemann, R., Hiller, T., de La Lama, M.S., Herminghaus, S.: Wettability controls slow immiscible displacement through local interfacial instabilities. Phys. Rev. Fluids 1, 074202 (2016)CrossRefGoogle Scholar
  19. Kang, Q., Zhang, D., Chen, S.: Immiscible displacement in a channel: simulations of fingering in two dimensions. Adv. Water Resour. 27, 13–22 (2004)CrossRefGoogle Scholar
  20. Kawahara, A., Chung, P.-Y., Kawaji, M.: Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. Int. J. Multiph. Flow 28, 1411–1435 (2002)CrossRefGoogle Scholar
  21. Kazemi, H., Merrill Jr., L., Porterfield, K., Zeman, P., et al.: Numerical simulation of water–oil flow in naturally fractured reservoirs. Soc. Pet. Eng. J. 16, 317–326 (1976)CrossRefGoogle Scholar
  22. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546 (2000)CrossRefGoogle Scholar
  23. Landry, C., Karpyn, Z., Ayala, O.: Relative permeability of homogenous-wet and mixed-wet porous media as determined by pore-scale lattice Boltzmann modeling. Water Resour. Res. 50, 3672–3689 (2014)CrossRefGoogle Scholar
  24. Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)CrossRefGoogle Scholar
  25. Li, Q., Luo, K., Li, X.: Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys. Rev. E 87, 053301 (2013)CrossRefGoogle Scholar
  26. Li, Q., Luo, K., Kang, Q., Chen, Q.: Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys. Rev. E 90, 053301 (2014)CrossRefGoogle Scholar
  27. Liu, H., Valocchi, A.J., Kang, Q., Werth, C.: Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method. Transp. Porous Media 99, 555–580 (2013)CrossRefGoogle Scholar
  28. Liu, H., Kang, Q., Leonardi, C.R., Schmieschek, S., Narváez, A., Jones, B.D., Williams, J.R., Valocchi, A.J., Harting, J.: Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 20, 777–805 (2016)CrossRefGoogle Scholar
  29. Luo, L.-S.: Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases. Phys. Rev. E 62, 4982 (2000)CrossRefGoogle Scholar
  30. Martys, N.S., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743 (1996)CrossRefGoogle Scholar
  31. McCracken, M.E., Abraham, J.: Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E 71, 036701 (2005)CrossRefGoogle Scholar
  32. Monteagudo, J., Firoozabadi, A.: Control-volume method for numerical simulation of two-phase immiscible flow in two-and three-dimensional discrete-fractured media. Water Resour. Res. 40, W074051–W0740520 (2004)CrossRefGoogle Scholar
  33. Nick, H., Matthäi, S.: Comparison of three FE-FV numerical schemes for single-and two-phase flow simulation of fractured porous media. Transp. Porous Media 90, 421–444 (2011)CrossRefGoogle Scholar
  34. Otomo, H., Fan, H., Hazlett, R., Li, Y., Staroselsky, I., Zhang, R., Chen, H.: Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method. C. R. Méc. 343, 559–570 (2015)CrossRefGoogle Scholar
  35. Pan, C., Hilpert, M., Miller, C.: Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 40, W01501 (2004)Google Scholar
  36. Porter, M.L., Coon, E., Kang, Q., Moulton, J., Carey, J.: Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios. Phys. Rev. E 86, 036701 (2012)CrossRefGoogle Scholar
  37. Saboorian-Jooybari, H.: Analytical estimation of water–oil relative permeabilities through fractures. Oil Gas Sci. Technol. Rev. d’IFP Energies nouv. 71, 31 (2016)CrossRefGoogle Scholar
  38. Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815 (1993)CrossRefGoogle Scholar
  39. Shan, X., Doolen, G.: Multicomponent lattice-Boltzmann model with interparticle interaction. J. Stat. Phys. 81, 379–393 (1995)CrossRefGoogle Scholar
  40. Unsal, E., Matthäi, S.K., Blunt, M.J.: Simulation of multiphase flow in fractured reservoirs using a fracture-only model with transfer functions. Comput. Geosci. 14, 527–538 (2010)CrossRefGoogle Scholar
  41. Wu, Y.-S.: Numerical simulation of single-phase and multiphase non-Darcy flow in porous and fractured reservoirs. Transp. Porous Media 49, 209–240 (2002)CrossRefGoogle Scholar
  42. Xu, W., Ok, J.T., Xiao, F., Neeves, K.B., Yin, X.: Effect of pore geometry and interfacial tension on water–oil displacement efficiency in oil-wet microfluidic porous media analogs. Phys. Fluids 26, 093102 (2014)CrossRefGoogle Scholar
  43. Yang, J., Boek, E.S.: A comparison study of multi-component lattice Boltzmann models for flow in porous media applications. Comput. Math. Appl. 65, 882–890 (2013)CrossRefGoogle Scholar
  44. Yang, Z., Niemi, A., Fagerlund, F., Illangasekare, T., Detwiler, R.L.: Dissolution of dense non-aqueous phase liquids in vertical fractures: effect of finger residuals and dead-end pools. J. Contam. Hydrol. 149, 88–99 (2013)CrossRefGoogle Scholar
  45. Yiotis, A.G., Psihogios, J., Kainourgiakis, M.E., Papaioannou, A., Stubos, A.K.: A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media. Colloids Surf. A Physicochem. Eng. Asp. 300, 35–49 (2007)CrossRefGoogle Scholar
  46. Yuan, P., Schaefer, L.: Equations of state in a lattice Boltzmann model. Phys. Fluids 18, 042101 (2006)CrossRefGoogle Scholar
  47. Zhang, C., Oostrom, M., Wietsma, T.W., Grate, J.W., Warner, M.G.: Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels 25, 3493–3505 (2011)CrossRefGoogle Scholar
  48. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1996). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Long Cheng
    • 1
    • 2
  • Xiaofan Li
    • 2
    Email author
  • Guan Rong
    • 1
  • Chuangbing Zhou
    • 1
    • 3
  1. 1.School of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
  2. 2.Department of Applied MathematicsIllinois Institute of TechnologyChicagoUSA
  3. 3.Nanchang UniversityNanchangChina

Personalised recommendations