Advertisement

Resolution and Limitations of X-Ray Micro-CT with Applications to Sandstones and Limestones

  • Jean E. ElkhouryEmail author
  • Raji Shankar
  • T. S. Ramakrishnan
Article
  • 29 Downloads

Abstract

X-ray microtomography (\(\upmu \hbox {CT}\)) scanning provides high-resolution images in applications ranging from medical to material sciences and failure analysis. In general, CT scanning relies on X-ray absorption to produce a 3D computed image of the material. In Earth Sciences, \(\upmu \hbox {CT}\) scans are used to characterize porosity and pore size, shape and topology of rock samples. For sufficiently large pore systems, the resulting segmented images may be used for quantitative transport calculations. In this note, we infer the limitations of \(\upmu \hbox {CT}\) images of rock samples, caused by attainable resolution for a representative sample size. To this end, (1) we perform a systematic analysis with the aid of a resolution chart, (2) we present example scans of an Indiana limestone and a Berea sandstone mini-cores, and (3) we process and analyze the images to extract pore structures using different segmentation algorithms. Porosity estimates inferred from \(\upmu \hbox {CT}\) images tend to be lower than bulk measurements.

Keywords

X-ray imaging X-ray micro-computed tomography (\(\upmu \hbox {CT}\)Resolution Digital rock Pixel size Rock porosity Sandstone Limestone 

Notes

Acknowledgements

We thank Roman Katz for his support in designing and 3D printing the chart holder.

References

  1. Auzerais, F.M., Dunsmuir, J., Ferréol, B.B., Martys, N., Olson, J., Ramakrishnan, T.S., Rothman, D.H., Schwartz, L.M.: Transport in sandstone: a study based on three dimensional microtomography. Geophys. Res. Lett. 23(7), 705 (1996)CrossRefGoogle Scholar
  2. Bertels, S.P., DiCarlo, D.A., Blunt, M.J.: Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resour. Res. 37(3), 649 (2001)CrossRefGoogle Scholar
  3. Cnudde, V., Boone, M.N.: High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci. Rev. 123, 1 (2013)CrossRefGoogle Scholar
  4. Czenek, A., Blanchard, R., Dejaco, A., Sigurjónsson, O.E., Örlygsson, G., Gargiulo, P., Hellmich, C.: Quantitative intravoxel analysis of microCT-scanned resorbing ceramic biomaterials—perspectives for computer-aided biomaterial design. J. Mater. Res. 29(23), 2757 (2014)CrossRefGoogle Scholar
  5. Deng, H., Fitts, J.P., Peters, C.A.: Quantifying fracture geometry with X-ray tomography: technique of iterative local thresholding TILT for 3D image segmentation. Comput. Geosci. 20, 231 (2016)CrossRefGoogle Scholar
  6. Ikeda, K., Goldfarb, E.J., Tisato, N.: Calculating effective elastic properties of Berea sandstone using segmentation-less method without targets. In: MR41B-0898, Presented at the 2017 Fall Meeting, AGU (2017)Google Scholar
  7. Kariem, H., Hellmich, C., Kiefer, T., Jäger, A., Füssl, J.: Micro-CT-based identification of double porosity in fired clay ceramics. J. Mater. Sci. 53, 9411 (2018)CrossRefGoogle Scholar
  8. Ketcham, R.A., Carlson, W.: Acquisition, optimization, and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci. 27, 381 (2001)CrossRefGoogle Scholar
  9. Mees, F., Swennen, R., Geet, M.V., Jacobs, P. (eds.): Applications of X-Ray Computed Tomography in the Geosciences. No. 215 in Special Publication. The Geological Society of London, London (2003)Google Scholar
  10. Ramakrishnan, T.S., Ramamoorthy, R., Fordham, E., Schwatrz, L., Herron, M., Saito, N., Rabaute, A.: A model-based interpretation methodology for evaluating carbonate reservoirs. In: SPE 71704 (2001)Google Scholar
  11. Ridler, T.W., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. SMC–8(8), 630 (1978)Google Scholar
  12. Sharma, P., Aswathi, P., Sane, A., Ghosh, A., Bahttacharya, S.: Three-dimensional real-time imaging of bi-phasic flow through porous media. Rev. Sci. Instrum. 82(113704), 1 (2011)Google Scholar
  13. Tisato, N., Ikeda, K., Goldfarb, E.J. Spikes, K.T.: Segmentation-less digital rock physics. In: MR41B-0901, Presented at the 2017 Fall Meeting, AGU (2017)Google Scholar
  14. Underwood, E.E.: Quantitative Stereology. Addison-Wesley, Boston (1970)Google Scholar
  15. Vinegar, H.F., Wellington, S.L.: Tomographic imaging of three-phase flow experiments. Rev. Sci. Instrum. 58(1), 96 (1987)CrossRefGoogle Scholar
  16. Wellington, S.L., Vinegar, H.F.: CT studies of surfactant-induced \(\text{CO}_2\) mobility control. In: Annual Technical Conference and Exhibition (SPE, 1985), p. 14393 (1985)Google Scholar
  17. Wellington, S.L., Vinegar, H.F.: X-ray computerized tomography. J. Pet. Technol. 39(8), 885 (1987)CrossRefGoogle Scholar
  18. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Schlumberger-Doll ResearchCambridgeUSA
  2. 2.Charles Stark Draper LaboratoryCambridgeUSA

Personalised recommendations