Advertisement

Simulation of Structure Change in Porous Media During Gas–Solid Reactions Using Cellular Automata Model

  • Meisam Tarabkhah
  • Behnam KhoshandamEmail author
Article
  • 20 Downloads

Abstract

In some gas–solid reactions, a new solid substance is produced. The product acts as a shield and prevents the collision between gas and solid reactants which further causes an incomplete reaction. If the molar volume of the new product differs from the solid reactant, the inner structure of porous media is changed as well. In this paper, we discuss such gas–solid reactions in porous media using the two-dimensional lattice gas cellular automata FHP-III model. We simulate the fluid flow and chemical reaction in different porous media. We also show the effects of porosity and morphology of the solid, and reaction probability on the reaction process. Results obtained from the simulations agree closely with the theory of gas–solid reactions and diffusion theories. Hence, the proposed model is a good choice to simulate gas–solid chemical reactions in porous media at the mesoscopic level.

Keywords

Porous media simulation Lattice gas cellular automata FHP-III Porosity change Non-catalytic gas–solid reaction 

Notes

References

  1. Almalowi, S.J.: Developing a stable lattice Boltzmann for computational dynamics applications. PhD Thesis, Mechanical Engineering, Lehigh University (2014)Google Scholar
  2. Balasubramanian, K., Hayot, F., Saam, W.: Darcy’s law from lattice-gas hydrodynamics. Phys. Rev. A 36(5), 2248 (1987)CrossRefGoogle Scholar
  3. Bekri, S., Thovert, J., Adler, P.: Dissolution of porous media. Chem. Eng. Sci. 50(17), 2765–2791 (1995)CrossRefGoogle Scholar
  4. Bhatia, S., Perlmutter, D.: Effect of the product layer on the kinetics of the CO2–lime reaction. AIChE J. 29(1), 79–86 (1983)CrossRefGoogle Scholar
  5. Biggs, M., Humby, S.: Lattice-gas automata methods for engineering. Chem. Eng. Res. Des. 76(2), 162–174 (1998)CrossRefGoogle Scholar
  6. Buick, J.M.: Lattice Boltzmann Methods in Interfacial Wave Modelling. University of Edinburgh, Edinburgh (1997)Google Scholar
  7. Chen, S., et al.: Lattice gas automata for flow through porous media. Physica D 47(1–2), 72–84 (1991)CrossRefGoogle Scholar
  8. Chen, S., Dawson, S., Doolen, G., Janecky, D., Lawniczak, A.: Lattice methods and their applications to reacting systems. Comput. Chem. Eng. 19(6–7), 617–646 (1995)CrossRefGoogle Scholar
  9. Chen, H., Zheng, Z., Chen, Z., Bi, X.T.: A lattice gas automata model for the coupled heat transfer and chemical reaction of gas flow around and through a porous circular cylinder. Entropy 18(1), 2 (2015)CrossRefGoogle Scholar
  10. Chopard, B.: Cellular automata modeling of physical systems. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 865–892. Springer, Berlin (2009)CrossRefGoogle Scholar
  11. Chopard, B., Dupuis, A., Masselot, A., Luthi, P.: Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Adv. Complex Syst. 5(3), 103–246 (2002)CrossRefGoogle Scholar
  12. Di Maio, F., Lignola, P., Di Gregorio, S.: Cellular automata simulation of coal combustion. Phys. Chem. Chem. Phys. 2(1), 83–89 (2000)CrossRefGoogle Scholar
  13. Doolen, G.D.: Lattice gas methods for partial differential equations: a volume of lattice gas reprints and articles, including selected papers from the workshop on large nonlinear systems, held August, 1987 in Los Alamos, New Mexico. Addison-Wesley Longman (1990)Google Scholar
  14. Ebrahimi, A.A., Ebrahim, H.A., Hatam, M., Jamshidi, E.: Finite element solution for gas–solid reactions: application to the moving boundary problems. Chem. Eng. J. 144(1), 110–118 (2008)CrossRefGoogle Scholar
  15. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56(14), 1505 (1986)CrossRefGoogle Scholar
  16. Gao, Y., Sharma, M.M.: A LGA model for fluid flow in heterogeneous porous media. Transp. Porous Media 17(1), 1–17 (1994)CrossRefGoogle Scholar
  17. Gurikov, P., Kolnoochenko, A., Golubchikov, M., Menshutina, N., Smirnova, I.: A synchronous cellular automaton model of mass transport in porous media. Comput. Chem. Eng. 84, 446–457 (2016)CrossRefGoogle Scholar
  18. Hardy, J., Pomeau, Y., De Pazzis, O.: Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions. J. Math. Phys. 14(12), 1746–1759 (1973)CrossRefGoogle Scholar
  19. Hoefner, M., Fogler, H.S.: Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34(1), 45–54 (1988)CrossRefGoogle Scholar
  20. Judice, S.F.: Lattice gas cellular automata for fluid simulation. In: Lee, N. (ed.) Encyclopedia of Computer Graphics and Games, pp. 1–8. Springer, Cham (2018)Google Scholar
  21. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method, vol. 10, p. 978-3. Springer, Berlin (2017)CrossRefGoogle Scholar
  22. Küntz, M., van Mier, J., Lavallée, P.: A lattice gas automaton simulation of the nonlinear diffusion equation: a model for moisture flow in unsaturated porous media. Transp. Porous Media 43(2), 289–307 (2001)CrossRefGoogle Scholar
  23. Lakshmi, M.R.: Cellular automaton fluids—a review. Sadhana 14(3), 133–172 (1989)CrossRefGoogle Scholar
  24. Li, M., Wu, Y., Zhao, Z.: Effect of endothermic reaction mechanisms on the coupled heat and mass transfers in a porous packed bed with Soret and Dufour effects. Int. J. Heat Mass Transf. 67, 164–172 (2013)CrossRefGoogle Scholar
  25. Lu, H., Reddy, E.P., Smirniotis, P.G.: Calcium oxide based sorbents for capture of carbon dioxide at high temperatures. Ind. Eng. Chem. Res. 45(11), 3944–3949 (2006)CrossRefGoogle Scholar
  26. Machado, R.: Numerical simulations of surface reaction in porous media with lattice Boltzmann. Chem. Eng. Sci. 69(1), 628–643 (2012)CrossRefGoogle Scholar
  27. Matyka, M., Khalili, A., Koza, Z.: Tortuosity–porosity relation in porous media flow. Phys. Rev. E 78(2), 026306 (2008)CrossRefGoogle Scholar
  28. McNamara, G.R., Garcia, A.L., Alder, B.J.: Stabilization of thermal lattice Boltzmann models. J. Stat. Phys. 81(1–2), 395–408 (1995)CrossRefGoogle Scholar
  29. Mourzenko, V., Békri, S., Thovert, J.-F., Adler, P.: Deposition in fractures. Chem. Eng. Commun. 148(1), 431–464 (1996)CrossRefGoogle Scholar
  30. Nabovati, A., Sousa, A.: Fluid flow simulation in random porous media at pore level using lattice Boltzmann method. In: Zhuang, F.G., Li, J.C. (eds.) New Trends in Fluid Mechanics Research, pp. 518–521. Springer, Berlin (2007)CrossRefGoogle Scholar
  31. Ozcan, D.C.: Development of a Sorbent for Carbon Dioxide. Iowa State University, Ames (2010)CrossRefGoogle Scholar
  32. Reyes, L.I., Parades, R., Gutiérrez, G.: Power law for the permeability in a two-dimensional disordered porous medium. Physica A 274(3), 391–399 (1999)CrossRefGoogle Scholar
  33. Rivet, J.-P., Boon, J.P.: Lattice Gas Hydrodynamics. Cambridge University Press, Cambridge (2005)Google Scholar
  34. Rothman, D.H.: Cellular-automaton fluids: a model for flow in porous media. Geophysics 53(4), 509–518 (1988)CrossRefGoogle Scholar
  35. Salles, J., Thovert, J., Adler, P.: Deposition in porous media and clogging. Chem. Eng. Sci. 48(16), 2839–2858 (1993)CrossRefGoogle Scholar
  36. Sohi, H.Z., Khoshandam, B.: Cellular automata modeling of non-catalytic gas–solid reactions. Chem. Eng. J. 200, 710–719 (2012)CrossRefGoogle Scholar
  37. Szekely, J., Evans, J.W., Sohn, H.Y.: Gas-Solid Reactions. Academic Press, New York (1976)Google Scholar
  38. Valipour, M.S., Saboohi, Y.: Modeling of multiple noncatalytic gas–solid reactions in a moving bed of porous pellets based on finite volume method. Heat Mass Transf. 43(9), 881–894 (2007)CrossRefGoogle Scholar
  39. Wang, M., Wang, J., Pan, N., Chen, S.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75(3), 036702 (2007)CrossRefGoogle Scholar
  40. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer, Berlin (2004)Google Scholar
  41. Wylie, B.J.: Application of two-dimensional cellular automaton lattice-gas models to the simulation of hydrodynamics. PhD Thesis, The University of Edinburgh (1990)Google Scholar
  42. Xin, F., Li, X.-F., Xu, M., Huai, X.-L., Cai, J., Guo, Z.-X.: Simulation of gas exothermic chemical reaction in porous media reactor with lattice Boltzmann method. J. Therm. Sci. 22(1), 42–47 (2013)CrossRefGoogle Scholar
  43. Zhou, L., Qu, Z., Chen, L., Tao, W.: Lattice Boltzmann simulation of gas–solid adsorption processes at pore scale level. J. Comput. Phys. 300, 800–813 (2015)CrossRefGoogle Scholar
  44. Zhou, L., Qu, Z., Ding, T., Miao, J.: Lattice Boltzmann simulation of the gas–solid adsorption process in reconstructed random porous media. Phys. Rev. E 93(4), 043101 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Oil, Gas and Chemical Engineering DepartmentSemnan UniversitySemnanIran

Personalised recommendations