Advertisement

Cotransport of Suspended Colloids and Nanoparticles in Porous Media

  • G. V. C. Malgaresi
  • H. Zhang
  • C. V. Chrysikopoulos
  • P. BedrikovetskyEmail author
Article
  • 46 Downloads

Abstract

The objective of this study is to develop a model for cotransport of colloids and nanoparticles (NPs) in porous media under two particle capture mechanisms. The particle capture rate is proportional to the capture probability, which is a function of retained concentration, called the filtration function. Laboratory bench-scale experiments of individual transport of NPs and colloidal-size kaolinite clay particles through packed columns produced breakthrough curves (BTCs) that monotonically increased with time and stabilised at some value lower than the injected concentration. We discuss the filtration function that corresponds to BTCs stabilising at the concentration lower than the injected value. This so-called binary filtration function incorporates two particle capture mechanisms. The analytical transport model with a binary filtration function was capable to fit successfully BTCs obtained from individual transport experiments using kaolinite and NPs conducted by Chrysikopoulos et al. (Transp Porous Med 119(1):181–204, 2017). Assuming that the electrostatic particle–solid matrix interaction and the fraction of the solid matrix surface area occupied by a single attached particle (kaolinite or NP) are the same for individual transport of either kaolinite particles or NPs and for simultaneous cotransport of kaolinite particles and NPs, the proposed binary filtration function was extended for the cotransport case. Although the breakthrough data from cotransport experiments with kaolinite particles and NPs have six degrees of freedom, the developed cotransport model successfully matches the BTCs by tuning two constants only. This validates the developed model for cotransport of two colloidal populations with different attachments and straining rates.

Keywords

Colloidal transport Nanoparticles Cotransport Analytical model Attachment and straining 

List of Symbols

c

Suspended concentration [ML−3]

C

Normalised suspended concentration [–]

k

Permeability [L2]

S

Retained concentration [ML−3]

sm

Maximum attached concentration [ML−3]

S

Normalised retained concentration [–]

t

Time [T]

T

Dimensionless time [PVI]

U

Flow velocity [LT−1]

x

Axial coordinate [L]

X

Dimensionless axial coordinate [–]

Greek Letters

ϕ

Porosity [–]

λ0

Initial attachment filtration coefficient [L−1]

Λ0

Dimensionless initial filtration coefficient [–]

λ1

Size exclusion (straining) filtration coefficient [L−1]

Λ1

Dimensionless size exclusion filtration coefficient [–]

λ

Filtration coefficient [L2M−1]

μ

Viscosity [ML−1T−1]

Subscripts

K

Kaolinite

m

Maximum value

N

Nanoparticle

Notes

References

  1. Abdel-Salam, A., Chrysikopoulos, C.V.: Modeling of colloid and colloid-facilitated contaminant transport in a two-dimensional fracture with spatially variable aperture. Transp. Porous Med. 20(3), 197–221 (1995)Google Scholar
  2. Alem, A., Ahfir, N.-D., Elkawafi, A., Wang, H.: Hydraulic operating conditions and particle concentration effects on physical clogging of a porous medium. Transp. Porous Med. 106(2), 303–321 (2015)Google Scholar
  3. Alvarez, A., Bedrikovetsky, P., Hime, G., Marchesin, A., Marchesin, D., Rodrigues, J.: A fast inverse solver for the filtration function for flow of water with particles in porous media. Inverse Probl. 22(1), 69 (2005)Google Scholar
  4. Alvarez, A.C., Hime, G., Marchesin, D., Bedrikovetsky, P.G.: The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media. Transp. Porous Med. 70(1), 43–62 (2007)Google Scholar
  5. Arab, D., Pourafshary, P.: Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids Surf. A Physicochem. Eng. Asp. 436, 803–814 (2013)Google Scholar
  6. Arab, D., Pourafshary, P., Ayatollahi, S.: Mathematical modeling of colloidal particles transport in the medium treated by nanofluids: deep bed filtration approach. Transp. Porous Med. 103(3), 401–419 (2014)Google Scholar
  7. Araújo, J.A., Santos, A.: Analytic model for DBF under multiple particle retention mechanisms. Transp. Porous Med. 97(2), 135–145 (2013)Google Scholar
  8. Arns, C., Adler, P.: Fast Laplace solver approach to pore-scale permeability. Phys. Rev. E 97(2), 023303 (2018)Google Scholar
  9. Bashtani, F., Taheri, S., Kantzas, A.: Scale up of pore-scale transport properties from micro to macro scale; network modelling approach. J. Petrol. Sci. Eng. 170, 541–562 (2018)Google Scholar
  10. Bedrikovetsky, P.: Upscaling of stochastic micro model for suspension transport in porous media. Transp. Porous Med. 75(3), 335–369 (2008)Google Scholar
  11. Bedrikovetsky, P.: Mathematical Theory of Oil and Gas Recovery: With Applications to Ex-USSR Oil and Gas Fields, vol. 4. Springer, Berlin (2013)Google Scholar
  12. Bedrikovetsky, P., You, Z., Badalyan, A., Osipov, Y., Kuzmina, L.: Analytical model for straining-dominant large-retention depth filtration. Chem. Eng. J. 330, 1148–1159 (2017)Google Scholar
  13. Bekhit, H.M., El-Kordy, M.A., Hassan, A.E.: Contaminant transport in groundwater in the presence of colloids and bacteria: model development and verification. J. Contam. Hydrol. 108(3–4), 152–167 (2009)Google Scholar
  14. Bennacer, L., Ahfir, N.-D., Alem, A., Wang, H.: Coupled effects of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles in saturated porous media. Transp. Porous Med. 118(2), 251–269 (2017)Google Scholar
  15. Bradford, S.A., Kim, H.N., Haznedaroglu, B.Z., Torkzaban, S., Walker, S.L.: Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environ. Sci. Technol. 43(18), 6996–7002 (2009)Google Scholar
  16. Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37(10), 2242–2250 (2003)Google Scholar
  17. Bradford, S.A., Torkzaban, S., Leij, F., Šimůnek, J., van Genuchten, M.T.: Modeling the coupled effects of pore space geometry and velocity on colloid transport and retention. Water Resour. Res. 45(2) (2009b)Google Scholar
  18. Chequer, L., Russell, T., Behr, A., Genolet, L., Kowollik, P., Badalyan, A., Zeinijahromi, A., Bedrikovetsky, P.: Non-monotonic permeability variation during colloidal transport: governing equations and analytical model. J. Hydrol. 557, 547–560 (2017)Google Scholar
  19. Chrysikopoulos, C.V., Sotirelis, N.P., Kallithrakas-Kontos, N.G.: Cotransport of graphene oxide nanoparticles and kaolinite colloids in porous media. Transp. Porous Med. 119(1), 181–204 (2017)Google Scholar
  20. Civan, F.: Reservoir Formation Damage. Gulf Professional Publishing, Houston (2015)Google Scholar
  21. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)Google Scholar
  22. Elimelech, M., Gregory, J., Jia, X.: Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann, Oxford (2013)Google Scholar
  23. Farajzadeh, R., Guo, H., van Winden, J., Bruining, J.: Cation exchange in the presence of oil in porous media. ACS Earth Space Chem. 1(2), 101–112 (2017)Google Scholar
  24. Guedes, R.G., Al-Abduwani, F., Bedrikovetsky, P., Currie, P.: Injectivity decline under multiple particle capture mechanisms. J. Soc. Pet. Eng. 14, 477–487 (2009)Google Scholar
  25. Hammadi, A., Ahfir, N.-D., Alem, A., Wang, H.: Effects of particle size non-uniformity on transport and retention in saturated porous media. Transp. Porous Med. 118(1), 85–98 (2017)Google Scholar
  26. Hayek, M.: Exact solutions for one-dimensional transient gas flow in porous media with gravity and Klinkenberg effects. Transp. Porous Med. 107(2), 403–417 (2015)Google Scholar
  27. Hayek, M., Kosakowski, G., Jakob, A., Churakov, S.V.: A class of analytical solutions for multidimensional multispecies diffusive transport coupled with precipitation‐dissolution reactions and porosity changes. Water Resour. Res. 48(3) (2012)Google Scholar
  28. Herzig, J., Leclerc, D., Goff, P.L.: Flow of suspensions through porous media—application to deep filtration. Ind. Eng. Chem. 62(5), 8–35 (1970)Google Scholar
  29. Katzourakis, V.E., Chrysikopoulos, C.V.: Mathematical modeling of colloid and virus cotransport in porous media: application to experimental data. Adv. Water Resour. 68, 62–73 (2014)Google Scholar
  30. Katzourakis, V.E., Chrysikopoulos, C.V.: Modeling dense-colloid and virus cotransport in three-dimensional porous media. J. Contam. Hydrol. 181, 102–113 (2015)Google Scholar
  31. Kuhnen, F., Barmettler, K., Bhattacharjee, S., Elimelech, M., Kretzschmar, R.: Transport of iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition. J. Colloid Interface Sci. 231(1), 32–41 (2000)Google Scholar
  32. Kuzmina, L.I., Osipov, Y.V., Galaguz, Y.P.: A model of two-velocity particles transport in a porous medium. Int. J. Non Linear Mech. 93, 1–6 (2017)Google Scholar
  33. Mansouri, M., Nakhaee, A., Pourafshary, P.: Effect of SiO2 nanoparticles on fines stabilization during low salinity water flooding in sandstones. J. Petrol. Sci. Eng. 174, 637–648 (2019)Google Scholar
  34. Mikhailov, D., Zhvick, V., Ryzhikov, N., Shako, V.: Modeling of rock permeability damage and repairing dynamics due to invasion and removal of particulate from drilling fluids. Transp. Porous Med. 121(1), 37–67 (2018)Google Scholar
  35. Mirabolghasemi, M., Prodanović, M., DiCarlo, D., Ji, H.: Prediction of empirical properties using direct pore-scale simulation of straining through 3D microtomography images of porous media. J. Hydrol. 529, 768–778 (2015)Google Scholar
  36. Oladyshkin, S., Panfilov, M.: Streamline splitting between thermodynamics and hydrodynamics in a compositional gas–liquid flow through porous media. C. R. Méc. 335(1), 7–12 (2007)Google Scholar
  37. Polyanin, A.: EqWorld, The World of Mathematical Equations. http://eqworld.ipmnet.ru/ (2004). Accessed 01/06/2018
  38. Polyanin, A., Zaitsev, V.: Handbook of Nonlinear Partial Differential Equations. CRC Press, Boca Raton (2012)Google Scholar
  39. Polyanin, A.D., Dilʹman, V.V.: Methods of Modeling Equations and Analogies in Chemical Engineering. CRC Press, Boca Raton (1994)Google Scholar
  40. Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. CRC Press, Boca Raton (2006)Google Scholar
  41. Rottman, J., Sierra-Alvarez, R., Shadman, F.: Real-time monitoring of nanoparticle retention in porous media. Environ. Chem. Lett. 11(1), 71–76 (2013)Google Scholar
  42. Russell, T., Pham, D., Neishaboor, M.T., Badalyan, A., Behr, A., Genolet, L., Kowollik, P., Zeinijahromi, A., Bedrikovetsky, P.: Effects of kaolinite in rocks on fines migration. J. Nat. Gas Sci. Eng. 45, 243–255 (2017)Google Scholar
  43. Santos, A., Bedrikovetsky, P.: A stochastic model for particulate suspension flow in porous media. Transp. Porous Med. 62(1), 23–53 (2006)Google Scholar
  44. Sefrioui, N., Ahmadi, A., Omari, A., Bertin, H.: Numerical simulation of retention and release of colloids in porous media at the pore scale. Colloids Surf. A Physicochem. Eng. Asp. 427, 33–40 (2013)Google Scholar
  45. Shampine, L.: Solving hyperbolic PDEs in MATLAB. Appl. Numer. Anal. Comput. Math. 2(3), 346–358 (2005a)Google Scholar
  46. Shampine, L.F.: Two-step Lax–Friedrichs method. Appl. Math. Lett. 18(10), 1134–1136 (2005b)Google Scholar
  47. Shapiro, A., Wesselingh, J.: Gas transport in tight porous media: gas kinetic approach. Chem. Eng. J. 142(1), 14–22 (2008)Google Scholar
  48. Shapiro, A., Yuan, H.: Application of stochastic approaches to modelling suspension flow in porous media. In: Skogseid, A., Fasano, V. (eds.) Statistical Mechanics and Random Walks: Principles, Processes and Applications. Hauppauge, New York (2012)Google Scholar
  49. Shapiro, A.A., Bedrikovetsky, P.G., Santos, A., Medvedev, O.O.: A stochastic model for filtration of particulate suspensions with incomplete pore plugging. Transp. Porous Med. 67(1), 135–164 (2007)Google Scholar
  50. Shapiro, A., Bedrikovetsky, P.: Elliptic random-walk equation for suspension and tracer transport in porous media. Phys. A: Stat. Mech. Appl. 387(24), 5963–5978 (2008)Google Scholar
  51. Shapiro, A., Bedrikovetsky, P.: A stochastic theory for deep bed filtration accounting for dispersion and size distributions. Phys. A: Stat. Mech. Appl. 389, 2473–2494 (2010)Google Scholar
  52. Sharma, M., Yortsos, Y.: Transport of particulate suspensions in porous media: model formulation. AlChE J. 33(10), 1636–1643 (1987)Google Scholar
  53. Shikhov, I., Arns, C.H.: Evaluation of capillary pressure methods via digital rock simulations. Transp. Porous Med. 107(2), 623–640 (2015)Google Scholar
  54. Sorbie, K., Stamatiou, A.: Analytical solutions of a one-dimensional linear model describing scale inhibitor precipitation treatments. Transp. Porous Med. 123, 271–287 (2018)Google Scholar
  55. Sotirelis, N.P., Chrysikopoulos, C.V.: Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids. Sci. Total Environ. 579, 736–744 (2017)Google Scholar
  56. Syngouna, V.I., Chrysikopoulos, C.V., Kokkinos, P., Tselepi, M.A., Vantarakis, A.: Cotransport of human adenoviruses with clay colloids and TiO2 nanoparticles in saturated porous media: effect of flow velocity. Sci. Total Environ. 598, 160–167 (2017)Google Scholar
  57. Wang, Y., Arns, C.H., Rahman, S.S., Arns, J.-Y.: Porous structure reconstruction using convolutional neural networks. Math. Geosci. 50, 1–19 (2018a)Google Scholar
  58. Wang, Y., Rahman, S.S., Arns, C.H.: Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm. Phys. A: Stat. Mech. Appl. 493, 177–188 (2018b)Google Scholar
  59. Yanici, S., Arns, J.-Y., Cinar, Y., Pinczewski, W., Arns, C.: Percolation effects of grain contacts in partially saturated sandstones: deviations from Archie’s law. Transp. Porous Med. 96(3), 457–467 (2013)Google Scholar
  60. You, Z., Bedrikovetsky, P., Badalyan, A., Hand, M.: Particle mobilization in porous media: temperature effects on competing electrostatic and drag forces. Geophys. Res. Lett. 42(8), 2852–2860 (2015)Google Scholar
  61. Yuan, B., Moghanloo, R.G.: Analytical model of well injectivity improvement using nanofluid preflush. Fuel 202, 380–394 (2017).  https://doi.org/10.1016/j.fuel.2017.04.004 Google Scholar
  62. Yuan, B., Moghanloo, R.G., Zheng, D.: Analytical evaluation of nanoparticle application to mitigate fines migration in porous media. SPE J. 21(06), 2–317 (2016a)Google Scholar
  63. Yuan, B., Wang, W., Moghanloo, R.G., Su, Y., Wang, K., Jiang, M.: Permeability reduction of berea cores owing to nanoparticle adsorption onto the pore surface: mechanistic modeling and experimental work. Energy Fuels 31(1), 795–804 (2016b)Google Scholar
  64. Yuan, H., Shapiro, A., You, Z., Badalyan, A.: Estimating filtration coefficients for straining from percolation and random walk theories. Chem. Eng. J. 210, 63–73 (2012)Google Scholar
  65. Yuan, H., Shapiro, A.A.: Modeling non-Fickian transport and hyperexponential deposition for deep bed filtration. Chem. Eng. J. 162(3), 974–988 (2010)Google Scholar
  66. Zhang, H., Malgaresi, G.V.C., Bedrikovetsky, P.: Exact solutions for suspension-colloidal transport with multiple capture mechanisms. Int. J. Non Linear Mech. 105, 27–42 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • G. V. C. Malgaresi
    • 1
  • H. Zhang
    • 1
  • C. V. Chrysikopoulos
    • 2
  • P. Bedrikovetsky
    • 1
    Email author
  1. 1.Australian School of PetroleumUniversity of AdelaideAdelaideAustralia
  2. 2.School of Environmental EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations