Modeling Nanoparticle Transport in Porous Media in the Presence of a Foam

  • Qingjian Li
  • Valentina PrigiobbeEmail author


Nano-remediation is a promising in situ remediation technology. It consists in injecting reactive nanoparticles (NPs) into the subsurface for the displacement or the degradation of contaminants. However, due to the poor mobility control of the reactive nanoparticle suspension, the application of nano-remediation has some major challenges, such as high mobility of the particles, which may favor override of the contamination, and particle aggregation, which can lead to a limited distance of influence. Previous experimental studies show the potential of combining nano-remediation with foam flooding to overcome these issues. However, in order to design and optimize the process, a model which couples nanoparticle and foam transport is necessary. In this paper, a mechanistic model to describe the transport of NPs with and by a foam is presented. The model considers the delivery of nanoscale zero-valent iron (nZVI) and accounts for the processes of aggregation, attachment/detachment, and generation/destruction. Simulations show that when NPs are dispersed in the liquid phase, even in the presence of a foam, they may travel much slower than the NPs carried by the foam bubbles. This is because the nanoparticles in suspension are affected by the attachment onto the rock walls and straining at the pore throats. When the nanoparticle surface is, instead, modified in order to favor their adsorption onto the gas bubbles, NPs are carried by the foam without retardation, except for the small fraction suspended in the liquid phase. Moreover, very stable high-quality foam (\(f_\mathrm{g}\)), i.e., 80–90 vol% of gas, can be attained using properly surface-modified nZVI (i.e., a nanoparticle-stabilized foam), allowing a significant reduction of water for the operation, while increasing the efficiency of nZVI delivery, even in a low-permeability medium within the shallow subsurface.


Contaminated sites Foam Nanoparticles Population balance equation Remediation 



This work is supported by the Innovation & Entrepreneurial Fellowship Program at Stevens Institute of Technology and by the American Chemical Society Petroleum Research Fund (ACS-PRF) under the Grant number PRF# 57739-DNI9.

Supplementary material

11242_2019_1235_MOESM1_ESM.pdf (560 kb)
Supplementary material 1 (pdf 560 KB)


  1. Alvarez, J., Rivas, H., Rossen, W.: A unified model for steady-state foam behavior at high and low foam qualities. In: IOR 1999-10th European Symposium on Improved Oil Recovery. Society of Petroleum Engineers (1999)Google Scholar
  2. Apaydin, O.G., Kovscek, A.R.: Surfactant concentration and end effects on foam flow in porous media. Transp. Porous Media 43(3), 511–536 (2001)CrossRefGoogle Scholar
  3. Atmuri, A.K., Henson, M.A., Bhatia, S.R.: A population balance equation model to predict regimes of controlled nanoparticle aggregation. Colloids Surfaces A: Physicochem. Eng. Aspects 436, 325–332 (2013)CrossRefGoogle Scholar
  4. Attarakih, M.M., Bart, H.J., Faqir, N.M.: Numerical solution of the spatially distributed population balance equation describing the hydrodynamics of interacting liquid-liquid dispersions. Chem. Eng. Sci. 59(12), 2567–2592 (2004)CrossRefGoogle Scholar
  5. Aziz, K.: Petroleum reservoir simulation. Appl. Sci. Publ. (1979)Google Scholar
  6. Azmin, M., Mohamedi, G., Edirisinghe, M., Stride, E.: Dissolution of coated microbubbles: the effect of nanoparticles and surfactant concentration. Mater. Sci. Eng. C 32(8), 2654–2658 (2012)CrossRefGoogle Scholar
  7. Bayat, A.E., Junin, R., Shamshirband, S., Chong, W.T.: Transport and retention of engineered Al\(_2\) O\(_3\), TiO\(_2\), and SiO\(_2\) nanoparticles through various sedimentary rocks. Sci. Rep. 5 (2015)Google Scholar
  8. Bernard, G.G., Jacobs, W.: Effect of foam on trapped gas saturation and on permeability of porous media to water. SPE J. 5(04), 295–300 (1965)Google Scholar
  9. Binks, B.P.: Particles as surfactants similarities and differences. Curr. Opin. Colloid Interface Sci. 7(1–2), 21–41 (2002)CrossRefGoogle Scholar
  10. Binks, B.P., Kirkland, M., Rodrigues, J.A.: Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures. Soft Matter 4(12), 2373–2382 (2008)CrossRefGoogle Scholar
  11. Bogush, G., Zukoski Iv, C.: Uniform silica particle precipitation: an aggregative growth model. J. Colloid Interface Sci. 142(1), 19–34 (1991)CrossRefGoogle Scholar
  12. Carn, F., Colin, A., Pitois, O., Vignes-Adler, M., Backov, R.: Foam drainage in the presence of nanoparticle–surfactant mixtures. Langmuir 25(14), 7847–7856 (2009)CrossRefGoogle Scholar
  13. Chang, Y.C., Chen, D.H.: Preparation and adsorption properties of monodisperse chitosan-bound Fe\(_3\)O\(_4\) magnetic nanoparticles for removal of cu (ii) ions. J. Colloid Interface Sci. 283(2), 446–451 (2005)CrossRefGoogle Scholar
  14. Conn, C.A., Ma, K., Hirasaki, G.J., Biswal, S.L.: Visualizing oil displacement with foam in a microfluidic device with permeability contrast. Lab Chip 14(20), 3968–3977 (2014)CrossRefGoogle Scholar
  15. Das, B.M., Sobhan, K.: Principles of Geotechnical Engineering. Cengage Learning, Boston (2013)Google Scholar
  16. de Vries, A.S., Wit, K.: Rheology of gas/water foam in the quality range relevant to steam foam. SPE Reserv. Eng. 5(02), 185–192 (1990)CrossRefGoogle Scholar
  17. Ding, Y., Liu, B., Shen, X., Zhong, L., Li, X.: Foam-assisted delivery of nanoscale zero valent iron in porous media. J. Environ. Eng. 139(9), 1206–1212 (2013)CrossRefGoogle Scholar
  18. Elimelech, M., Gregory, J., Jia, X.: Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann, Oxford (2013)Google Scholar
  19. Elimelech, M., O’Melia, C.R.: Kinetics of deposition of colloidal particles in porous media. Environ. Sci. Technol. 24(10), 1528–1536 (1990)CrossRefGoogle Scholar
  20. Espinoza, D.A., Caldelas, F.M., Johnston, K.P., Bryant, S.L., Huh, C.: Nanoparticle-stabilized supercritical CO\(_2\) foams for potential mobility control applications. In: SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2010)Google Scholar
  21. Falls, A., Hirasaki, G., Patzek, T.E.A., Gauglitz, D., Miller, D., Ratulowski, T.: Development of a mechanistic foam simulator: the population balance and generation by snap-off. SPE Reserv. Eng. 3(03), 884–892 (1988)CrossRefGoogle Scholar
  22. Gastone, F., Tosco, T., Sethi, R.: Guar gum solutions for improved delivery of iron particles in porous media (part 1): porous medium rheology and guar gum-induced clogging. J. Contam. Hydrol. 166, 23–33 (2014)CrossRefGoogle Scholar
  23. Gauglitz, P.A., Friedmann, F., Kam, S.I., Rossen, W.R.: Foam generation in homogeneous porous media. Chem. Eng. Sci. 57(19), 4037–4052 (2002)CrossRefGoogle Scholar
  24. Ghosh, S., Jiang, W., McClements, J.D., Xing, B.: Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27(13), 8036–8043 (2011)CrossRefGoogle Scholar
  25. Hirasaki, G., Miller, C., Szafranski, R., Tanzil, D., Lawson, J., Meinardus, H., Jin, M., Londergan, J., Jackson, R., Pope, G., et al.: Field demonstration of the surfactant/foam process for aquifer remediation. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1997)Google Scholar
  26. Hirasaki, G., Lawson, J.: Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. SPE J. 25(02), 176–190 (1985)Google Scholar
  27. Hoefner, M., Evans, E., Buckles, J., Jones, T., et al.: CO\(_2\) foam: results from four developmental field trials. SPE Reserv. Eng. 10(04), 273–281 (1995)CrossRefGoogle Scholar
  28. Hogg, R., Healy, T.W., Fuerstenau, D.W.: Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62, 1638–1651 (1966)CrossRefGoogle Scholar
  29. Hsu, D.: Transport and development of microemulsion-and surfactant stabilized iron nanoparticles for in situ remediation. Ph.D. thesis (2017)Google Scholar
  30. Jiemvarangkul, P., Zhang, W.X., Lien, H.L.: Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem. Eng. J. 170(2–3), 482–491 (2011)CrossRefGoogle Scholar
  31. Johnson, R.L., Nurmi, J., Johnson, R., Shi, Z., Tratnyek, P., Phenrat, T., Lowry, G.: Injection of nano zero-valent iron for subsurface remediation: a controlled field-scale test of transport. In: Proceedings of the 7th International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, CA (2010)Google Scholar
  32. Kam, S.I.: Improved mechanistic foam simulation with foam catastrophe theory. Colloids Surf. A: Physicochem. Eng. Asp. 318(1), 62–77 (2008)CrossRefGoogle Scholar
  33. Kam, S., Rossen, W.: A model for foam generation in homogeneous media. SPE J. 8(04), 417–425 (2003)CrossRefGoogle Scholar
  34. Kam, S.I., Nguyen, Q.P., Li, Q., Rossen, W.R.: Dynamic simulations with an improved model for foam generation. SPE J. 12(01), 35–48 (2007)CrossRefGoogle Scholar
  35. Kaptay, G.: On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams. Colloids Surfaces A: Physicochem. Eng. Asp. 282, 387–401 (2006)CrossRefGoogle Scholar
  36. Karn, B., Kuiken, T., Otto, M.: Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ. Health Perspect. 117(12), 1813 (2009)CrossRefGoogle Scholar
  37. Khatib, Z., Hirasaki, G., Falls, A.: Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media. SPE Reserv. Eng. 3(03), 919–926 (1988)CrossRefGoogle Scholar
  38. Kim, J., Grate, J.W.: Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3(9), 1219–1222 (2003)CrossRefGoogle Scholar
  39. Klinkenberg, L., et al.: The permeability of porous media to liquids and gases. In: Drilling and production practice. American Petroleum Institute (1941)Google Scholar
  40. Kocur, C.M., O’Carroll, D.M., Sleep, B.E.: Impact of nZVI stability on mobility in porous media. J. Contam. Hydrol. 145, 17–25 (2013)CrossRefGoogle Scholar
  41. Kovscek, A., Patzek, T., Radke, C.: A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone. Chem. Eng. Sci. 50(23), 3783–3799 (1995)CrossRefGoogle Scholar
  42. Kumar, S., Ramkrishna, D.: On the solution of population balance equations by discretizationi. A fixed pivot technique. Chem. Eng. Sci. 51(8), 1311–1332 (1996)CrossRefGoogle Scholar
  43. Lake, L.: Enhanced Oil Recovery. Prentice Hall, New Jersey (1989)Google Scholar
  44. Lawson, J.B., Reisberg, J.: Alternate slugs of gas and dilute surfactant for mobility control during chemical flooding. In: SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1980)Google Scholar
  45. Li, R.F., Yan, W., Liu, S., Hirasaki, G., Miller, C.A., et al.: Foam mobility control for surfactant enhanced oil recovery. SPE J. 15(04), 928–942 (2010)CrossRefGoogle Scholar
  46. Li, Z., Kessel, J., Grünewald, G., Kind, M.: Coupled cfd-pbe simulation of nucleation in fluidized bed spray granulation. Dry. Technol. 31(15), 1888–1896 (2013)CrossRefGoogle Scholar
  47. Lv, Q., Li, Z., Li, B., Li, S., Sun, Q.: Study of nanoparticle–surfactant–stabilized foam as a fracturing fluid. Ind. Eng. Chem. Res. 54(38), 9468–9477 (2015)CrossRefGoogle Scholar
  48. Ma, K., Ren, G., Mateen, K., Morel, D., Cordelier, P., et al.: Literature review of modeling techniques for foam flow through porous media. In: SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2014)Google Scholar
  49. Maire, J., Coyer, A., Fatin-Rouge, N.: Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLS. J. Hazard. Mater. 299, 630–638 (2015)CrossRefGoogle Scholar
  50. Mannhardt, K., Novosad, J.J.: Adsorption of foam-forming surfactants for hydrocarbon-miscible flooding at high salinities. Adv. Chem. Ser. 242, 259–259 (1994)CrossRefGoogle Scholar
  51. Martinez, A.C., Rio, E., Delon, G., Saint-Jalmes, A., Langevin, D., Binks, B.P.: On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. Soft Matter 4(7), 1531–1535 (2008)CrossRefGoogle Scholar
  52. MathWorks: Matlab R2014b (2014).
  53. Mohammadi, S., Coombe, D., Stevenson, V., et al.: Test of steam-foam process for mobility control in south Casper creek reservoir. J. Can. Pet. Technol. 32(10), 49–54 (1993)CrossRefGoogle Scholar
  54. Nutt, M.O., Hughes, J.B., Wong, M.S.: Designing pd-on-au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ. Sci. Technol. 39(5), 1346–1353 (2005)CrossRefGoogle Scholar
  55. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., Kocur, C.: Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122 (2013)CrossRefGoogle Scholar
  56. Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., Jia, Z.: Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 376(1–2), 154–158 (2003)CrossRefGoogle Scholar
  57. Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., Lowry, G.V.: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41(1), 284–290 (2007)CrossRefGoogle Scholar
  58. Phenrat, T., Saleh, N., Sirk, K., Kim, H.J., Tilton, R.D., Lowry, G.V.: Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanoparticle Res. 10(5), 795–814 (2008)CrossRefGoogle Scholar
  59. Prigiobbe, V., Worthen, A.J., Johnston, K.P., Huh, C., Bryant, S.L.: Transport of nanoparticle-stabilized co\(_2\) 2-foam in porous media. Transp. Porous Media 111(1), 265–285 (2016)CrossRefGoogle Scholar
  60. Pugh, R.J.: Bubble and Foam Chemistry. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  61. Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W.S., Gavaskar, A., Holdsworth, T.: Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol. 39(5), 1309–1318 (2005)CrossRefGoogle Scholar
  62. Randolph, A.: Theory of Particulate Processes. Academic Press, Cambridge (1988)Google Scholar
  63. Ransohoff, T., Radke, C.: Mechanisms of foam generation in glass-bead packs. SPE Reserv. Eng. 3(02), 573–585 (1988)CrossRefGoogle Scholar
  64. Rossen, W.R.: Theory of mobilization pressure gradient of flowing foams in porous media: I. Incompressible foam. J Colloid Interface Sci. 136(1), 1–16 (1990)CrossRefGoogle Scholar
  65. Rossen, W.R.: Foams in enhanced oil recovery. Foams: Theory Measure. Appl. 57, 413–464 (1996)Google Scholar
  66. Sa, J., Agüera, C.A., Gross, S., Anderson, J.A.: Photocatalytic nitrate reduction over metal modified TiO\(_2\). Appl. Catal. B: Environ. 85(3–4), 192–200 (2009)CrossRefGoogle Scholar
  67. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R.D., Lowry, G.V.: Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ. Eng. Sci. 24(1), 45–57 (2007)CrossRefGoogle Scholar
  68. Schrick, B., Hydutsky, B.W., Blough, J.L., Mallouk, T.E.: Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem. Mater. 16(11), 2187–2193 (2004)CrossRefGoogle Scholar
  69. Scott, W.T.: Analytic studies of cloud droplet coalescence I. J. Atmos. Sci. 25(1), 54–65 (1968)CrossRefGoogle Scholar
  70. Shen, X., Zhao, L., Ding, Y., Liu, B., Zeng, H., Zhong, L., Li, X.: Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. J. Hazard. Mater. 186(2–3), 1773–1780 (2011)CrossRefGoogle Scholar
  71. Smith, A.M., Lee, A.A., Perkin, S.: The electrostatic screening length in concentrated electrolytes increases with concentration. J. Phys. Chem. Lett. 7(12), 2157–2163 (2016)CrossRefGoogle Scholar
  72. Song, W., Justice, R., Jones, C., Grassian, V., Larsen, S.: Synthesis, characterization, and adsorption properties of nanocrystalline zsm-5. Langmuir 20(19), 8301–8306 (2004)CrossRefGoogle Scholar
  73. Thwala, J.M., Li, M., Wong, M.C., Kang, S., Hoek, E.M., Mamba, B.B.: Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions. Langmuir 29(45), 13773–13782 (2013)CrossRefGoogle Scholar
  74. Tosco, T., Papini, M.P., Viggi, C.C., Sethi, R.: Nanoscale zerovalent iron particles for groundwater remediation: a review. J. Clean. Prod. 77, 10–21 (2014)CrossRefGoogle Scholar
  75. Tosco, T., Gastone, F., Sethi, R.: Guar gum solutions for improved delivery of iron particles in porous media (part 2): iron transport tests and modeling in radial geometry. J. Contam. Hydrol. 166, 34–51 (2014)CrossRefGoogle Scholar
  76. Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38(2), 529–536 (2004)CrossRefGoogle Scholar
  77. Viota, J., De Vicente, J., Duran, J., Delgado, A.: Stabilization of magnetorheological suspensions by polyacrylic acid polymers. J. Colloid Interface Sci. 284(2), 527–541 (2005)CrossRefGoogle Scholar
  78. Wang, S., Mulligan, C.N.: An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57(9), 1079–1089 (2004)CrossRefGoogle Scholar
  79. Wang, Z., Choi, F., Acosta, E.: Effect of surfactants on zero-valent iron nanoparticles (nZVI) reactivity. J. Surfactants Deterg. 20(3), 577–588 (2017)CrossRefGoogle Scholar
  80. Ward, C.: NAPL Removal Surfactants, Foams, and Microemulsions. CRC Press, Boca Raton (2016)Google Scholar
  81. Wei, Y.T., Wu, S.C., Chou, C.M., Che, C.H., Tsai, S.M., Lien, H.L.: Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Res. 44(1), 131–140 (2010)CrossRefGoogle Scholar
  82. Wei, Y.T., Wu, S.C., Yang, S.W., Che, C.H., Lien, H.L., Huang, D.H.: Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J. Hazard. Mater. 211–212, 373–380 (2012)CrossRefGoogle Scholar
  83. Worthen, A.J., Bagaria, H.G., Chen, Y., Bryant, S.L., Huh, C., Johnston, K.P.: Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture. J. Colloid Interface Sci. 391, 142–151 (2013)CrossRefGoogle Scholar
  84. Worthen, A.J., Bryant, S.L., Huh, C., Johnston, K.P.: Carbon dioxide-in-water foams stabilized with nanoparticles and surfactant acting in synergy. AIChE J. 59(9), 3490–3501 (2013)CrossRefGoogle Scholar
  85. Xiang, A., Yan, W., Koel, B.E., Jaffé, P.R.: Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media. J. Nanoparticle Res. 15(7), 1705 (2013)CrossRefGoogle Scholar
  86. Xiang, A., Zhou, S., Koel, B.E., Jaffé, P.R.: Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation. J. Nanoparticle Res. 16(4), 2294 (2014)CrossRefGoogle Scholar
  87. Yao, K.M., Habibian, M.T., O’Melia, C.R.: Water and waste water filtration concepts and applications. Environ. Sci. Technol. 5(11), 1105–1112 (1971)CrossRefGoogle Scholar
  88. Yin, G., Grigg, R.B., Svec, Y., et al.: Oil recovery and surfactant adsorption during co2-foam flooding. In: Offshore Technology Conference. Society of Petroleum Engineers (2009)Google Scholar
  89. Yu, J., Khalil, M., Liu, N., Lee, R.: Effect of particle hydrophobicity on CO\(_2\) foam generation and foam flow behavior in porous media. Fuel 126, 104–108 (2014)CrossRefGoogle Scholar
  90. Zhang, W.X.: Nanoscale iron particles for environmental remediation: an overview. J. Nanoparticle Res. 5(3–4), 323–332 (2003)CrossRefGoogle Scholar
  91. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., Zhao, D.: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266 (2016)CrossRefGoogle Scholar
  92. Zhong, L., Qafoku, N.P., Szecsody, J.E., Dresel, P.E., Zhang, Z.F.: Foam delivery of calcium polysulfide to the vadose zone for chromium (vi) immobilization: a laboratory evaluation. Vadose Zone J. 8(4), 976–985 (2009)CrossRefGoogle Scholar
  93. Zhong, L., Szecsody, J.E., Zhang, F., Mattigod, S.V.: Foam delivery of amendments for vadose zone remediation: propagation performance in unsaturated sediments. Vadose Zone J. 9(3), 757–767 (2010)CrossRefGoogle Scholar
  94. Zhou, Z., Rossen, W., et al.: Applying fractional-flow theory to foam processes at the limiting capillary pressure. SPE Adv. Technol. Ser. 3(01), 154–162 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil, Environmental, and Ocean EngineeringStevens Institute of TechnologyHobokenUSA

Personalised recommendations