Advertisement

Dynamic Temperature Analysis Under Variable Rate and Pressure Conditions for Transient and Boundary Dominated Flow

  • Yilin MaoEmail author
  • Mehdi Zeidouni
Article
  • 14 Downloads

Abstract

Current analytical approaches for temperature transient analysis heavily rely on the assumption of the constant rate production, which is often invalid for the extended period of oil production. This work addresses this issue by introducing novel analytical approaches to model the temperature signal under dynamic rate and pressure conditions. The introduced methods share underlying theories of superposition principle and production rate normalization from pressure transient analysis and include a newly derived analytical solution when these theories are not applicable. With adapting these methods, cases with complex production history are modeled using analog cases producing with a constant rate. The dynamic temperature analysis developed herein is validated using synthetic temperature data both graphically and by quantitative estimation of reservoir properties. The estimation outputs of these methods include permeability, drainage area, and damaged zone properties. Other features of existing temperature transient analysis, such as fluid property correction and monitoring well surveillance, are also extended to variable rate and pressure conditions in this paper. Two cases documented in the literature are addressed by dynamic temperature analysis for which decent reservoir characterization results are obtained. The dynamic temperature analysis proposed in this paper extends the scope of temperature transient analysis to complex production constraints and demonstrates convincing results for practical purposes.

Keywords

Reservoir characterization Temperature transient analysis Variable rate and pressure Boundary dominated flow Rate transient analysis 

List of Symbols

\(\eta \)

Diffusivity for pressure transient (\(\hbox {L}^{2}\,\hbox {t}^{-1},\, \hbox {m}^2\,\hbox {s}^{-1})\)

\(\mu \)

Fluid viscosity \((\hbox {m\,L}^{-1}\,\mathrm{t^{-1}}\), Pa\(\cdot \) s)

\(\mu _{JT,f}, \mu _{JT,w}, \mu _{JT,m}\)

JT coefficient of the fluid phase, water phase, and saturated porous medium, respectively \((\hbox {L\,t}^2\,\mathrm{T/m, \hbox {K/Pa}})\)

\(\phi \)

Average porosity in the porous medium

\(\rho _f, \rho _s, \rho _w, \rho _m\)

Density of the fluid phase, solid phase, water phase, saturated porous medium, respectively (\(\hbox {m\,L}^{-3}, \hbox {kg/m}^3\))

A

Drainage area \((\hbox {L}^2, \hbox {m}^2)\)

\(C_1\)

Constant defined in Eq. 18

\(c_f, c_s, c_w, c_m\)

Specific heat capacity of the fluid phase, solid phase, water phase, and saturated porous medium, respectively \((\hbox {L}^2/\hbox {t}^2\hbox {T}, \hbox {J/(kg\,K)})\)

D

Exponential decline constant (1/t, 1/s)

H

Reservoir thickness (L, m)

\(k, k_s\)

Reservoir permeability and damaged zone permeability \((\hbox {L}^2, \hbox {m}^2)\)

\(K_r\)

Rock conductivity \((\hbox {ML\,t}^{-3}\,\hbox {T}^{-1}, \hbox {W/(mK)})\)

\(k_r\)

Relative permeability

m

Slopes used in Eqs. 23, 2629 for TTA characterization procedures

p

Pressure \((\hbox {m\,L}^{-1}\,\hbox {t}^{-2}, \hbox {Pa})\)

Q

Cumulative production rate \((\hbox {L}^3, \hbox {m}^3)\)

\(q, q_i\)

Downhole production rate and initial production rate \((\hbox {L}^3\,\hbox {t}^{-1}, \hbox {m}^3/\hbox {s})\)

\(Q_A, Q_s, Q_e, Q_p, Q_{JT}\)

Intercepts used in Eqs. 24 and 30 for TTA characterization procedures, superposition cumulative production function defined in Eq. 6, and the start and end of the quasi-linear behavior used in Eq. 25\((\hbox {L}^3, \hbox {m}^3)\)

r

Radius (L, m)

\(r_D, t_D, T_D\)

Dimensionless radius, time, and temperature, respectively

\(r_s, r_e, r_{sf}\)

Near wellbore damaged zone radius, outer closed boundary radius and the radius of sand-face, respectively (L, m)

s

Near wellbore damage skin factor

\(S_{wr}\)

Saturation of the residual water

T

Temperature (T, K)

t

Time (t, s)

\(T_i\)

Initial reservoir temperature, respectively (T, K)

u

Darcy velocity (\(\hbox {L\,t}^{-1}\), \(\hbox {m}\,\hbox {s}^{-1}\))

\({{\hat{c}}_t}\)

Total compressibility of the fluid saturated porous media \((\hbox {m}^{-1}\hbox {L\,t}^2, \hbox {1/Pa})\)

Notes

References

  1. Agarwal, R.G., Gardner, D.C., Kleinsteiber, S.W., Fussell, D.D.: Analyzing well production data using combined-type-curve and decline-curve analysis concepts. Spe Res. Eval. Eng. 2(5), 478 (1999).  https://doi.org/10.2118/57916-Pa CrossRefGoogle Scholar
  2. App, J.F.: Nonisothermal and productivity behavior of high-pressure reservoirs. Spe J. 15(1), 50 (2010).  https://doi.org/10.2118/114705-PA CrossRefGoogle Scholar
  3. App, J.F.: Influence of flow geometry on sandface temperatures during single-phase oil production: dimensionless analysis. SPE J. 21(03), 0928 (2016).  https://doi.org/10.2118/166298-pa CrossRefGoogle Scholar
  4. App, J.: Permeability, skin, and inflow-profile estimation from production-logging-tool temperature traces. SPE J. (2017).  https://doi.org/10.2118/174910-pa
  5. App, J.F., Yoshioka, K.: Impact of reservoir permeability on flowing sandface temperatures: dimensionless analysis. Spe J. 18(4), 685 (2013).  https://doi.org/10.2118/146951-PA CrossRefGoogle Scholar
  6. Bello, R.O., Wattenbarger, R.A.: Multi-stage hydraulically fractured horizontal shale gas well rate transient analysis (2010).  https://doi.org/10.2118/126754-MS
  7. Blasingame, T.A., Lee, W.J.: Variable-rate reservoir limits testing (1986).  https://doi.org/10.2118/15028-MS
  8. Blasingame, T.A., McCray, T.L., Lee, W.J.: Decline curve analysis for variable pressure drop/variable flowrate systems (1991).  https://doi.org/10.2118/21513-MS
  9. Bourdet, D., Ayoub, J.A., Pirard, Y.M.: Use of pressure derivative in well test interpretation. SPE Form. Eval. 4(02), 293 (1989).  https://doi.org/10.2118/12777-pa CrossRefGoogle Scholar
  10. Chekalyuk, E.: Thermodynamics of Oil Formation, vol. 1. Nedra, Moscow (1965)Google Scholar
  11. Chevarunotai, N., Hasan, A.R., Kabir, C.S.: Transient flowing-fluid temperature modeling in oil reservoirs for flow associated with large drawdowns (2015).  https://doi.org/10.2118/175008-MS
  12. CMG-GEM. Gem - compositional and unconventional oil and gas simulator (2015). http://www.cmgl.ca/software/gem2015. Accessed 1 Jan 2018
  13. Dada, A., Muradov, K., Dadzie, K., Davies, D.: Numerical and analytical modelling of sandface temperature in a dry gas producing well. J. Nat. Gas Sci. Eng. 40, 189 (2017).  https://doi.org/10.1016/j.jngse.2017.02.005 CrossRefGoogle Scholar
  14. Duru, O.O., Horne, R.N.: Simultaneous interpretation of pressure, temperature, and flow-rate data using Bayesian inversion methods. SPE Res. Eval. Eng. 14(2), 225 (2011).  https://doi.org/10.2118/124827-PA CrossRefGoogle Scholar
  15. Fetkovich, M.J.: Decline curve analysis using type curves. J. Pet. Technol. 32(6), 1065 (1980).  https://doi.org/10.2118/4629-Pa CrossRefGoogle Scholar
  16. Gysen, A., Gysen, M., Zett, A., Webster, M.J., Yusti Calero. G.H.: Production logging in highly deviated and horizontal wells: moving from qualitative to quantitative answers. Production logging in highly deviated and horizontal wells: moving from qualitative to quantitative answers (2010).  https://doi.org/10.2118/133479-MS
  17. Hurst, W.: Unsteady flow of fluids in oil reservoirs. Phys. J. Gener. Appl. Phys. 5(1), 20 (1934).  https://doi.org/10.1063/1.1745206 Google Scholar
  18. KAPPA-RUBIS. Rubis - multi purpose numerical model (2015). https://www.kappaeng.com/software/rubis. Accessed 1 Jan 2018
  19. Kuchuk, F.J., Onur, M., Hollaender, F.: Pressure transient formation and well testing: convolution, deconvolution and nonlinear estimation, vol. 57 (Elsevier, 2010)Google Scholar
  20. Lee, J.: Well testing. SPE textbook series. Society of Petroleum Engineers, Richardson, TX (1982)Google Scholar
  21. Li, Y., Cheng, B., Zhu, W., Xiao, H., Nygaard, R.: Development and evaluation of the coaxial cable casing imager: a cost-effective solution to real-time downhole monitoring for CO2 sequestration wellbore integrity. Greenh. Gases Sci. Technol. (2017).  https://doi.org/10.1002/ghg.1691
  22. Li, Z.Y., Yin, J.C., Zhu, D., Datta-Gupta, A.: Using downhole temperature measurement to assist reservoir characterization and optimization. J. Pet. Sci. Eng. 78(2), 454 (2011).  https://doi.org/10.1016/j.petrol.2011.06.012 CrossRefGoogle Scholar
  23. Mackay, S., Lovell, J.R., Patel, D.R., Cens, F., Escanero, S.: Completion design for sandface monitoring in subsea wells. SPE Drill. Complet. 25(02), 193 (2013).  https://doi.org/10.2118/116474-pa CrossRefGoogle Scholar
  24. Mao, Y., Zeidouni, M.: Analytical solutions for temperature transient analysis and near wellbore damaged zone characterization (2017a).  https://doi.org/10.2118/185990-MS
  25. Mao, Y., Zeidouni, M.: Near wellbore characterization from temperature transient analysis: accounting for non-Darcy flow effect (2017b).  https://doi.org/10.2118/189234-MS
  26. Mao, Y., Zeidouni, M.: Temperature transient analysis for characterization of multilayer reservoirs with crossflow (2017c).  https://doi.org/10.2118/185654-MS
  27. Mao, Y., Zeidouni, M.: Temperature transient analysis during boundary dominated flow period (2018a).  https://doi.org/10.2118/190022-MS
  28. Mao, Y., Zeidouni, M.: Accounting for fluid-property variations in temperature-transient analysis. SPE J. 23(3), 868 (2018b).  https://doi.org/10.2118/187465-PA CrossRefGoogle Scholar
  29. Mao, Y.L., Zeidouni, M.: Temperature transient analysis for bounded oil reservoir under depletion drive. Int. J. Thermal Sci. 130, 457 (2018c).  https://doi.org/10.1016/j.ijthermalsci.2018.05.011 CrossRefGoogle Scholar
  30. Mao, Y., Zeidouni, M., Askari, R.: Effect of leakage pathway flow properties on thermal signal associated with the leakage from CO2 storage zone. Greenh. Gases-Sci. Technol. 7(3), 512 (2017a).  https://doi.org/10.1002/ghg.1658 CrossRefGoogle Scholar
  31. Mao, Y., Zeidouni, M., Duncan, I.: Temperature analysis for early detection and rate estimation of CO2 wellbore leakage. Int. J. Greenh. Gas Control 67, 20 (2017b).  https://doi.org/10.1016/j.ijggc.2017.09.021 CrossRefGoogle Scholar
  32. Mathias, S.A., McElwaine, J.N., Gluyas, J.G.: Heat transport and pressure buildup during carbon dioxide injection into depleted gas reservoirs. J. Fluid Mech. 756, 89 (2014).  https://doi.org/10.1017/jfm.2014.348. URL<Go to ISI>://WOS:000341130000006
  33. Muradov, K., Davies, D.: Linear non-adiabatic flow of an incompressible fluid in a porous layer—review, adaptation and analysis of the available temperature models and solutions. J. Pet. Sci. Eng. 86–87, 1 (2012a).  https://doi.org/10.1016/j.petrol.2012.03.011 CrossRefGoogle Scholar
  34. Muradov, K., Davies, D.: Temperature transient analysis in horizontal wells: application workflow, problems and advantages. J. Pet. Sci. Eng. 92–93, 11 (2012b).  https://doi.org/10.1016/j.petrol.2012.06.012 CrossRefGoogle Scholar
  35. Nobakht, M., Clarkson, C.R., Kaviani, D.: New and improved methods for performing rate-transient analysis of shale gas reservoirs. Spe Res. Eval. Eng. 15(3), 335 (2012).  https://doi.org/10.2118/147869-Pa CrossRefGoogle Scholar
  36. Onur, M., Cinar, M.: Analysis of sandface-temperature-transient data for slightly compressible, single-phase reservoirs. SPE J. (2017a).  https://doi.org/10.2118/180074-pa
  37. Onur, M., Cinar, M.: Modeling and analysis of temperature transient sandface and wellbore temperature data from variable rate well test data (2017b).  https://doi.org/10.2118/185802-MS
  38. Palabiyik, Y., Onur, M., Tureyen, O.I., Cinar, M.: Transient temperature behavior and analysis of single-phase liquid-water geothermal reservoirs during drawdown and buildup tests: Part I. Theory, new analytical and approximate solutions. J. Pet. Sci. Eng. 146, 637 (2016).  https://doi.org/10.1016/j.petrol.2016.08.003
  39. Palacio, J.C., Blasingame, T.A.: Decline-curve analysis with type curves—analysis of gas well production data (1993).  https://doi.org/10.2118/25909-MS
  40. Peng, D., Robinson, D.B.: A new two-constant equation of State. Ind. Eng. Chem. Fundam. 15(1), 59 (1976).  https://doi.org/10.1021/i160057a011 CrossRefGoogle Scholar
  41. Ramazanov, A., Valiullin, R.A., Shako, V., Pimenov, V., Sadretdinov, A., Fedorov, V., Belov, K.: Thermal modeling for characterization of near wellbore zone and zonal allocation (2010).  https://doi.org/10.2118/136256-MS
  42. Rambow, F.H.K., Dria, D.E., Childers, B.A., Appel, M., Freeman, J.J., Shuck, M.Y., Poland, S.H., Dominique, T.: Real-time fiber-optic casing imager. Spe J. 15(4), 1095 (2010).  https://doi.org/10.2118/109941-PA CrossRefGoogle Scholar
  43. Sclater, K.C., Stephenson, B.R.: Measurements of original pressure, temperature and gas-oil ratio in oil sands. Trans. Am. Inst. Mining Metallurg. Eng. 82, 119 (1929).  https://doi.org/10.2118/929119-G Google Scholar
  44. Sui, W.B., Zhu, D.: Determining multilayer formation properties from transient temperature and pressure measurements in gas wells with commingled zones. J. Nat. Gas Sci. Eng. 9, 60 (2012).  https://doi.org/10.1016/j.jngse.2012.05.010 CrossRefGoogle Scholar
  45. Theis, C.V.: The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. Trans. Am. Geophys. Union 16, 519 (1935)CrossRefGoogle Scholar
  46. Winestock, A.G., Colpitts, G.P.: Advances in estimating gas well deliverability. J. Can. Pet. Technol. 4(03), 111 (1965).  https://doi.org/10.2118/65-03-01 CrossRefGoogle Scholar
  47. Wu, X.R., Xu, B.Y., Ling, K.G.: A semi-analytical solution to the transient temperature behavior along the vertical wellbore after well shut-in. J. Pet. Sci. Eng. 131, 122 (2015).  https://doi.org/10.1016/j.petrol.2015.04.034 CrossRefGoogle Scholar
  48. Xu, B., Forouzanfar, F.: The information content and integration of distributed-temperature-sensing data for near-wellbore-reservoir characterization. SPE Res. Eval. Eng. (2017).  https://doi.org/10.2118/180405-pa
  49. Yoshioka, K., Zhu, D., Hill, A.D., Dawkrajai, P., Lake, L.W.: Prediction of temperature changes caused by water or gas entry into a horizontal well. SPE Prod. Oper. 22(4), 425 (2007).  https://doi.org/10.2118/100209-Pa Google Scholar
  50. Yoshioka, K., Zhu, D., Hill, A.D., Lake, L.W.: A new inversion method to interpret flow profiles from distributed temperature and pressure measurements in horizontal wells. SPE Prod. Oper. 24(4), 510 (2009).  https://doi.org/10.2118/109749-PA Google Scholar
  51. Zeidouni, M., Nicot, J.P., Hovorka, S.: Monitoring above-zone temperature variations associated with CO2 and brine leakage from a storage aquifer. Environ. Earth Sci. 72(5), 1733 (2014).  https://doi.org/10.1007/s12665-014-3077-0 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Craft and Hawkins Department of Petroleum EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations