Advertisement

Transport in Porous Media

, Volume 127, Issue 3, pp 573–585 | Cite as

Stress Dependency of Permeability Represented by an Elastic Cylindrical Pore-Shell Model: Comment on Zhu et al. (Transp Porous Med (2018) 122:235–252)

  • Faruk CivanEmail author
Article
  • 55 Downloads

Abstract

Stress dependency of permeability of porous rocks is described by means of a theoretical elastic cylindrical pore-shell model. This model is developed based on a bundle of elastic capillary tubes representation of the preferential flow paths formed in heterogeneous porous rocks. The radial displacement caused in tubes by the pore fluid pressure applied over the surface of the elastic cylindrical flow tubes is expressed by a Lamé-type equation. The radial displacement is incorporated into the Kozeny–Carman relationship to determine the variation of the permeability of porous rocks by variation of the pore fluid pressure. The solution of this equation yields a semi-analytical equation which provides accurate correlations of the stress dependency of the permeability data of porous rocks. The errors associated with the previous formulation of this problem by Zhu et al. (Transp Porous Med 122:235–252, 2018) are explained in view of the present formulation.

Keywords

Porous rocks Permeability Stress dependency Kozeny–Carman equation Lamé equation 

List of symbols

a, b, c

Empirical parameters

aʹ, bʹ, cʹ, Dʹ

Empirical parameters

A, B, D, C

Empirical parameters

A1, Ab

Pore and bulk cross-sectional areas of porous rock (m2)

E

Young’s modulus (Pa)

K

Intrinsic permeability of porous rock (m2)

Ko

Intrinsic permeability at a reference effective stress \( \sigma_{\text{o}} \) (m2)

L1, Lb

Length of actual tortuous flow path and bulk length of porous rock (m)

n

Number of flow paths formed in porous rock

p

Pore fluid pressure (Pa)

p1, p2

Pressures applied over the inside surface of radius r1 and the outside surface of radius r2 of a hollow elastic cylindrical tube (Pa)

q

Flowing fluid volumetric flow rate (m3/s)

r1

Average internal radius of the bundle of elastic capillary tubes (m)

r2

Average external radius of influence of the variation of the pressure inside the flow tube beyond which no deformation occurs (m)

R2

Coefficients of regression, dimensionless

X

Biot–Willis poroelastic coefficient, dimensionless

V1, Vb

Pore volume and bulk volume of porous rock (m3)

Greek symbols

\( \sigma \)

Effective stress (Pa)

\( \sigma_{\text{c}} \)

Total confining stress (Pa)

\( \delta_{r} \)

Radial displacement at any radius r (m)

\( \mu \)

Fluid viscosity (Pa s)

\( \upsilon \)

Poisson’s ration of the reservoir rock formation, dimensionless

\( \tau \)

Tortuosity, dimensionless

ϕ

Porosity of porous formation, fraction

ϕo

Reference porosity, fraction

Notes

References

  1. Abdalrahman, T., Scheiner, S., Hellmich, C.: Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. J. Theor. Biol. 365, 433–444 (2015)CrossRefGoogle Scholar
  2. Bernabé, Y.: The effective pressure law for permeability in Chelmsford granite and Barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 23(3), 267–275 (1986).  https://doi.org/10.1016/0148-9062(86)90972-1 CrossRefGoogle Scholar
  3. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941).  https://doi.org/10.1063/1.1712886 CrossRefGoogle Scholar
  4. Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)Google Scholar
  5. Carman, P.C.: The determination of the specific surface of powder: I. J. Soc. Chem. Ind. 57, 225 (1937a)Google Scholar
  6. Carman, P.C.: Fluid flow through a granular bed. Trans. Inst. Chem. Eng. Lond. 15, 150–167 (1937b)Google Scholar
  7. Carman, P.C.: Flow of gases through porous media. Butterworths, London (1956)Google Scholar
  8. Civan, F.: Reservoir Formation Damage-Fundamentals, Modeling, Assessment, and Mitigation, 1st edn, p. 742. Gulf Pub Co., Houston, TX (2000)Google Scholar
  9. Civan, F.: Scale effect on porosity and permeability- kinetics, model, and correlation. AIChE J. 47(2), 271–287 (2001)CrossRefGoogle Scholar
  10. Civan, F.: Relating permeability to pore connectivity using a power-law flow unit equation. Petrophys. J. 43(6), 457–476 (2002)Google Scholar
  11. Civan, F.: Characterization of reservoir flow units based on a power-law equation of permeability obtained from an interacting bundle of leaky tubes model. In: SPE-187289-MS, the 2017 SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, 9–11 October 2017Google Scholar
  12. Gangi, A.F.: Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Mining Sci. Geomech. Abstracts 15(5), 249–257 (1978)CrossRefGoogle Scholar
  13. Ghabezloo, S., Sulem, J., Guedon, S., Martineau, F.: Effective stress law for the permeability of a limestone. Int. J. Rock. Mech. Min. 46, 297–306 (2009)CrossRefGoogle Scholar
  14. Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W.: Fundamentals of Rock Mechanics. Wiley, New York (2009)Google Scholar
  15. Kozeny, J.: Uber Kapillare Leitung des Wasser im Boden. Sitzungsbericht der Akademie der Wissenschaften, Wien 136, 271–306 (1927)Google Scholar
  16. Lamé, G.: Leçons sur la Théorie Mathématique de l’Élasticité des Corps Solides. Bachelier, Paris (1852)Google Scholar
  17. Morris, J.P., Lomov, I.N., Glenn, L.A.: A constitutive model for stress-induced permeability and porosity evolution of Berea sandstone. J. Geophys. Res. 108(B10), 2485 (2003).  https://doi.org/10.1029/2001JB000463 CrossRefGoogle Scholar
  18. Morrow, C.A., Shi, L.Q., Byerlee, J.D.: Permeability of fault gouge under confining pressure and shear stress. J. Geophys. Res. Solid Earth 89, 3193–3200 (1984)CrossRefGoogle Scholar
  19. Nelson, R.: Fracture permeability in porous reservoirs: Experimental and field approach. Dissertation for the Doctoral Degree. Texas: Texas A&M University (1975)Google Scholar
  20. Scheiner, S., Pivonka, P., Hellmich, C.: Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure. Biomech. Model. Mechanobiol. 15, 9–28 (2016).  https://doi.org/10.1007/s10237-015-0704-y CrossRefGoogle Scholar
  21. Seebyrger, D.A., Nur, A.A.: Pore space model for rock permeability and bulk modulus. J. Geophys. Res. 89(B1), 527–536 (1984)CrossRefGoogle Scholar
  22. Silvano, S.: Mathematical model of the Lame’ Problem for Simplified Elastic Theory applied to Controlled-Clearance Pressure Balances, Arxiv ID: 2010arXiv1007.0813S, fulldisplay.datasource.Cornell University (2010)Google Scholar
  23. Tan, X.-H., Li, X.-P., Liu, J.-Y., Zhang, L.-H., Fan, Z.: Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media. Phys. Lett. A 379, 2458–2465 (2015)CrossRefGoogle Scholar
  24. Wenlian, X., Tao, L., Min, L., Jinzhou, Z., Lingli, Z., Ling, L.: Evaluation of the stress sensitivity in tight reservoirs. Pet. Explor. Dev. 43(1), 115–123 (2016)CrossRefGoogle Scholar
  25. Yale, D.P.: Network modeling of flow, storage, and deformation in porous rocks. Stanford University, Stanford, California (1984)Google Scholar
  26. Yarushina, V.M., Bercovici, D., Oristaglio, M.L.: Rock deformation models and fluid leak-off in hydraulic fracturing. Geophys. J. Int. 194, 1514–1526 (2013).  https://doi.org/10.1093/gji/ggt199 CrossRefGoogle Scholar
  27. Yarushina, V.M., Podladchinov, Y.Y.: (De)compaction of porous viscoelastoplastic media: model formulation. J. Geophys. Res. Solid Earth (2014).  https://doi.org/10.1002/2014jb011258 Google Scholar
  28. Zimmerman, R.W.: Compressibility of Sandstones, Developments in Petroleum Science, vol. 29, p. 173. Elsevier Science Publishers B.V., Amsterdam (1991)Google Scholar
  29. Zhu, S.Y., Du, Z.M., Li, C.L., et al.: A semi-analytical model for pressure-dependent permeability of tight sandstone reservoirs. Transp. Porous Med. 122(2), 235–252 (2018)CrossRefGoogle Scholar
  30. Zoback, M.D., Byerlee, J.D.: The effect of microcrack dilatancy on the permeability of Westerly granite. J. Geophys. Res. 80, 752–755 (1975a)CrossRefGoogle Scholar
  31. Zoback, M.D., Byerlee, J.D.: Permeability and effective stress. AAPG Bull. 59(1), 154–158 (1975b)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Mewbourne School of Petroleum and Geological EngineeringThe University of OklahomaNormanUSA

Personalised recommendations