Advertisement

Microfluidics for Porous Systems: Fabrication, Microscopy and Applications

  • Alireza GeramiEmail author
  • Yara Alzahid
  • Peyman Mostaghimi
  • Navid Kashaninejad
  • Farzan Kazemifar
  • Tammy Amirian
  • Nader Mosavat
  • Majid Ebrahimi Warkiani
  • Ryan T. Armstrong
Article

Abstract

No matter how sophisticated the structures are and on what length scale the pore sizes are, fluid displacement in porous media can be visualized, captured, mimicked and optimized using microfluidics. Visualizing transport processes is fundamental to our understanding of complex hydrogeological systems, petroleum production, medical science applications and other engineering applications. Microfluidics is an ideal tool for visual observation of flow at high temporal and spatial resolution. Experiments are typically fast, as sample volume is substantially low with the use of miniaturized devices. This review first discusses the fabrication techniques for generating microfluidics devices, experimental setups and new advances in microfluidic fabrication using three-dimensional printing, geomaterials and biomaterials. We then address multiphase transport in subsurface porous media, with an emphasis on hydrology and petroleum engineering applications in the past few decades. We also cover the application of microfluidics to study membrane systems in biomedical science and particle sorting. Lastly, we explore how synergies across different disciplines can lead to innovations in this field. A number of problems that have been resolved, topics that are under investigation and cutting-edge applications that are emerging are highlighted.

Keywords

Microfluidics Porous media Flow visualization On-a-chip applications Lab-on-a-chip Micromodels 

Notes

References

  1. Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge (2011)Google Scholar
  2. Ahmed, F.E., Lalia, B.S., Hashaikeh, R.: A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356, 15–30 (2015)CrossRefGoogle Scholar
  3. Alagorni, A.H., Yaacob, Z., Nour, A.H.: An overview of oil production stages: enhanced oil recovery techniques and nitrogen injection. Int. J. Environ. Sci. Dev. 6(9), 693–701 (2015)CrossRefGoogle Scholar
  4. Albani, J.R.: Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies. Elsevier, Amsterdam (2011)Google Scholar
  5. Albaugh, K.B.: Electrode phenomena during anodic bonding of silicon to sodium borosilicate glass. J. Electrochem. Soc. 138(10), 3089–3094 (1991)CrossRefGoogle Scholar
  6. Alzahid, Y., et al.: Alkaline surfactant polymer flooding: what happens at the pore scale? In: SPE Europec Featured at 79th EAGE Conference and Exhibition. Society of Petroleum Engineers (2017)Google Scholar
  7. Alzahid, Y.A., et al.: Functionalisation of polydimethylsiloxane (PDMS)—microfluidic devices coated with rock minerals. Sci. Rep. 8(1), 15518 (2018)CrossRefGoogle Scholar
  8. Alzahid, Y.A., Mostaghimi, P., Walsh, S.D.C., Armstrong, R.T.: Flow regimes during surfactant flooding: the influence of phase behaviour. Fuel 236, 851–860 (2019)CrossRefGoogle Scholar
  9. Amirian, T., Haghighi, M., Mostaghimi, P.: Pore scale visualization of low salinity water flooding as an enhanced oil recovery method. Energy Fuels 31, 13133–13143 (2017)CrossRefGoogle Scholar
  10. Anbari, A., et al.: Microfluidic model porous media: fabrication and applications. Small 14(18), 1703575 (2018)CrossRefGoogle Scholar
  11. Armstrong, R.T., Berg, S.: Interfacial velocities and capillary pressure gradients during Haines jumps. Phys. Rev. E 88(4), 043010 (2013)CrossRefGoogle Scholar
  12. Atencia, J., Beebe, D.: Controlled microfluidic interfaces. Nature 437, 648–655 (2005)CrossRefGoogle Scholar
  13. Bachu, S.: Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers. Manag. 41(9), 953–970 (2000)CrossRefGoogle Scholar
  14. Barisam, M., Saidi, M., Kashaninejad, N., Vadivelu, R., Nguyen, N.-T.: Numerical simulation of the behavior of toroidal and spheroidal multicellular aggregates in microfluidic devices with microwell and U-shaped barrier. Micromachines 8(12), 358 (2017)CrossRefGoogle Scholar
  15. Bartels, W.-B., et al.: Oil configuration under high-salinity and low-salinity conditions at pore scale: a parametric investigation by use of a single-channel micromodel. SPE J. 22(05), 1362–1373 (2017)CrossRefGoogle Scholar
  16. Bartels, W.B., et al.: Low salinity flooding (LSF) in sandstones at pore scale: micro-model development and investigation. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, p. 17, Dubai (2016)Google Scholar
  17. Basabe-Desmonts, L., et al.: A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass. J. Am. Chem. Soc. 126(23), 7293–7299 (2004)CrossRefGoogle Scholar
  18. Berkowski, K.L., Plunkett, K.N., Yu, Q., Moore, J.S.: Introduction to photolithography: preparation of microscale polymer silhouettes. J. Chem. Educ. 82(9), 1365 (2005)CrossRefGoogle Scholar
  19. Bhatia, S.N., Ingber, D.E.: Microfluidic organs-on-chips. Nat. Biotechnol. 32(8), 760–772 (2014)CrossRefGoogle Scholar
  20. Biswas, R., Lewis, J.E., Maroncelli, M.: Electronic spectral shifts, reorganization energies, and local density augmentation of Coumarin 153 in supercritical solvents. Chem. Phys. Lett. 310, 485–494 (1999)CrossRefGoogle Scholar
  21. Booth, R., Kim, H.: Characterization of a microfluidic in vitro model of the blood–brain barrier (μBBB). Lab Chip 12(10), 1784–1792 (2012)CrossRefGoogle Scholar
  22. Bowden, S.A., Tanino, Y., Akamairo, B., Christensen, M.: Recreating mineralogical petrographic heterogeneity within microfluidic chips: assembly, examples, and applications. Lab Chip 16(24), 4677–4681 (2016)CrossRefGoogle Scholar
  23. Brian, J.K., Ellis, M.: Review of polymer MEMS micromachining. J. Micromech. Microeng. 26(1), 013001 (2016)CrossRefGoogle Scholar
  24. Britt, L.K., Schoeffler, J.: The Geomechanics of a Shale Play: What Makes a Shale Prospective. Society of Petroleum Engineers, New York (2009)Google Scholar
  25. Buchgraber, M., Kovscek, A.R., Castanier, L.M.: A study of microscale gas trapping using etched silicon micromodels. Transp. Porous Media 95(3), 647–668 (2012)CrossRefGoogle Scholar
  26. Cao, S.C., Dai, S., Jung, J.: Supercritical CO2 and brine displacement in geological carbon sequestration: micromodel and pore network simulation studies. Int. J. Greenhouse Gas Control 44(6), 104–114 (2016)CrossRefGoogle Scholar
  27. Chang, C., et al.: Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions. Adv. Water Resour. 92(March), 142–158 (2016)CrossRefGoogle Scholar
  28. Chang, C., Zhou, Q., Oostrom, M., Kneafsey, T.J., Mehta, H.: Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions. Adv. Water Resour. 100, 14–25 (2017)CrossRefGoogle Scholar
  29. Chapman, E.M., Yang, J., Crawshaw, J.P., Boek, E.S.: Pore scale models for imbibition of CO2 analogue fluids in etched micro-model junctions using micro-fluidic experiments and direct flow calculations. Energy Proc. 37, 3680–3686 (2013)CrossRefGoogle Scholar
  30. Chen, Y.: Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015)CrossRefGoogle Scholar
  31. Chen, Y., Li, Y., Valocchi, A.J., Christensen, K.T.: Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions. J. Contam. Hydrol. 53, 6178–6196 (2017)Google Scholar
  32. Chrimes, A.F., Khoshmanesh, K., Stoddart, P.R., Mitchell, A., Kalantar-zadeh, K.: Microfluidics and Raman microscopy: current applications and future challenges. Chem. Soc. Rev. 42(13), 5880–5906 (2013)CrossRefGoogle Scholar
  33. Christensen, K.: The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp. Fluids 36(3), 484–497 (2004)CrossRefGoogle Scholar
  34. Datta, S., Chiang, H., Ramakrishnan, T.S., Weitz, D.: Spatial fluctuations of fluid velocities in flow through a three-dimensional porous medium. Phys. Rev. Lett. 111, 064501 (2013)CrossRefGoogle Scholar
  35. Datta, S.S., Dupin, J.-B., Weitz, D.A.: Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium. Phys. Fluids 26(6), 062004 (2014)CrossRefGoogle Scholar
  36. Davies, M.J., Marques, M.P.C., Radhakrishnan, A.N.P.: Chapter 2 Microfluidics Theory in Practice, Microfluidics in Detection Science: Lab-on-a-chip Technologies, pp. 29–60. The Royal Society of Chemistry, New York (2015)Google Scholar
  37. de Haas, T.W., Fadaei, H., Guerrero, U., Sinton, D.: Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage. Lab Chip 13(19), 3832–3839 (2013)CrossRefGoogle Scholar
  38. Deckert, V., et al.: Spatial resolution in Raman spectroscopy. Faraday Discuss. 177, 9–20 (2015)CrossRefGoogle Scholar
  39. Delamarche, E., Tonna, N., Lovchik, R.D., Bianco, F., Matteoli, M.: Pharmacology on microfluidics: multimodal analysis for studying cell–cell interaction. Curr. Opin. Pharmacol. 13(5), 821–828 (2013)CrossRefGoogle Scholar
  40. Dong, M., Liu, Q., Li, A.: Displacement mechanisms of enhanced heavy oil recovery by alkaline flooding in a micromodel. Particuology 10(3), 298–305 (2012)CrossRefGoogle Scholar
  41. Dong, Y., et al.: Microfluidics and circulating tumor cells. J. Mol. Diagn. 15(2), 149–157 (2013)CrossRefGoogle Scholar
  42. Doughty, M.J.: pH dependent spectral properties of sodium fluorescein ophthalmic solutions revisited. Ophthalmic Physiol. Opt. 30(2), 167–174 (2010)CrossRefGoogle Scholar
  43. Fakhari, A., Li, Y., Bolster, D., Christensen, K.T.: A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: application and comparison to experiments of CO2 sequestration at pore scale. Adv. Water Resour. 114, 119–134 (2018)CrossRefGoogle Scholar
  44. Fan, X., et al.: A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens. Bioelectron. 71, 380–386 (2015)CrossRefGoogle Scholar
  45. Franssila, S.: Introduction to Microfabrication. Wiley (2010)Google Scholar
  46. Friend, J., Yeo, L.: Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(2), 026502 (2010)CrossRefGoogle Scholar
  47. Gerami, A., et al.: Microscale insights into gas recovery from bright and dull bands in coal. J. Petrol. Sci. Eng. 172, 373–382 (2018)CrossRefGoogle Scholar
  48. Gerami, A., et al.: Coal-on-a-chip: visualizing flow in coal fractures. Energy Fuels 31(10), 10393–10403 (2017)CrossRefGoogle Scholar
  49. Gerami, A., Mostaghimi, P., Armstrong, R.T., Zamani, A., Warkiani, M.E.: A microfluidic framework for studying relative permeability in coal. Int. J. Coal Geol. 159, 183–193 (2016)CrossRefGoogle Scholar
  50. Giboz, J., Copponnex, T., Mélé, P.: Microinjection molding of thermoplastic polymers: a review. J. Micromech. Microeng. 17(6), R96 (2007)CrossRefGoogle Scholar
  51. Godinez-Brizuela, O.E., Karadimitriou, N.K., Joekar-Niasar, V., Shore, C.A., Oostrom, M.: Role of corner interfacial area in uniqueness of capillary pressure-saturation- interfacial area relation under transient conditions. Adv. Water Resour. 107, 10–21 (2017)CrossRefGoogle Scholar
  52. Gomez, F.A.: The future of microfluidic point-of-care diagnostic devices. Bioanalysis 5(1), 1–3 (2013)CrossRefGoogle Scholar
  53. Gravesen, P., Branebjerg, J., Jensen, O.S.: Microfluidics—a review. J. Micromech. Microeng. 3(4), 168 (1993)CrossRefGoogle Scholar
  54. Guckenberger, D.J., de Groot, T.E., Wan, A.M.D., Beebe, D.J., Young, E.W.K.: Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11), 2364–2378 (2015)CrossRefGoogle Scholar
  55. Gunda, N.S., Bera, B., Karadimitriou, N.K., Mitra, S.K., Hassanizadeh, S.M.: Reservoir-on-a-chip (ROC): a new paradigm in reservoir engineering. Lab Chip 11(22), 3785–3792 (2011)CrossRefGoogle Scholar
  56. Guo, H., et al.: Quantitative Raman spectroscopic investigation of geo-fluids high-pressure phase equilibria: part I. Accurate calibration and determination of CO2 solubility in water from 273.15 to 573.15 K and from 10 to 120 MPa. Fluid Phase Equilib. 382, 70–79 (2014)CrossRefGoogle Scholar
  57. Guo, H., Huang, Y., Chen, Y., Zhou, Q.: Quantitative Raman spectroscopic measurements of CO2 solubility in NaCl solution from (273.15 to 473.15) K at p = (10.0, 20.0, 30.0, and 40.0) MPa. J. Chem. Eng. Data 61(1), 466–474 (2015)CrossRefGoogle Scholar
  58. Haber, C.: Microfluidics in commercial applications; an industry perspective. Lab Chip 6(9), 1118–1121 (2006)CrossRefGoogle Scholar
  59. Hae Choi, Y., et al.: Effect of functional groups on the solubilities of coumarin derivatives in supercritical carbon dioxide. Chromatographia 47(1–2), 93–97 (1998)CrossRefGoogle Scholar
  60. Haeberle, S., Zengerle, R.: Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9), 1094–1110 (2007)CrossRefGoogle Scholar
  61. Haszeldine, R.S.: Carbon capture and storage: how green can black be? Science (New York) 325(5948), 1647–1652 (2009)CrossRefGoogle Scholar
  62. He, K., Xu, L., Gao, Y., Yin, X., Neeves, K.B.: Evaluation of surfactant performance in fracturing fluids for enhanced well productivity in unconventional reservoirs using rock-on-a-Chip approach. J. Petrol. Sci. Eng. 135, 531–541 (2015)CrossRefGoogle Scholar
  63. He, K., Xu, L., Kenzhekhanov, S., Yin, X., Neeves, K.B.: A Rock-on-a-Chip Approach to Study Fluid Invasion and Flowback in Liquids-Rich Shale Formations. Society of Petroleum Engineers, London (2017)CrossRefGoogle Scholar
  64. Hematpour, H., Mardi, M., Edalatkhah, S., Arabjamaloei, R.: Experimental study of polymer flooding in low-viscosity oil using one-quarter five-spot glass micromodel. Pet. Sci. Technol. 29(11), 1163–1175 (2011)CrossRefGoogle Scholar
  65. Hilic, S., Boyer, S.V.A.E., AlAH, Pádua, Grolier, J.P.E.: Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling. J. Polym. Sci. Part B: Polym. Phys. 39(17), 2063–2070 (2001)CrossRefGoogle Scholar
  66. Homsy, G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19(1), 271–311 (1987)CrossRefGoogle Scholar
  67. Hu, R., Wan, J., Kim, Y., Tokunaga, T.K.: Wettability effects on supercritical CO2–brine immiscible displacement during drainage: pore-scale observation and 3D simulation. Int. J. Greenhouse Gas Control 60, 129–139 (2017a)CrossRefGoogle Scholar
  68. Hu, R., Wan, J., Kim, Y., Tokunaga, T.K.: Wettability Impact on Supercritical CO2 Capillary Trapping: Pore-Scale Visualization and Quantification. Water Resources Research, London (2017b)Google Scholar
  69. Huh, D., Hamilton, G.A., Ingber, D.E.: From 3D cell culture to organs-on-chips. Trends Cell Biol. 21(12), 745–754 (2011)CrossRefGoogle Scholar
  70. Huh, D., et al.: Microfabrication of human organs-on-chips. Nat. Protoc. 8(11), 2135–2157 (2013)CrossRefGoogle Scholar
  71. Huh, D., et al.: Reconstituting organ-level lung functions on a chip. Science 328(5986), 1662–1668 (2010)CrossRefGoogle Scholar
  72. Huppert, H.E., Neufeld, J.A.: The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46(1), 255–272 (2014)CrossRefGoogle Scholar
  73. Iliescu, C., Taylor, H., Avram, M., Miao, J., Franssila, S.: A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6(1), 016505–016505-16 (2012)CrossRefGoogle Scholar
  74. Jacob, R., Saylor, B.Z.: CO2 solubility in multi-component brines containing NaCl, KCl, CaCl 2 and MgCl 2 at 297 K and 1–14MPa. Chem. Geol. 424, 86–95 (2016)CrossRefGoogle Scholar
  75. Jafari, M., Jung, J.: Direct measurement of static and dynamic contact angles using a random micromodel considering geological CO2 sequestration. Sustainability 9(12), 2352 (2017)CrossRefGoogle Scholar
  76. Jahanshahi, A., Salvo, P., Vanfleteren, J.: PDMS selective bonding for the fabrication of biocompatible all polymer NC microvalves. J. Microelectromech. Syst. 22(6), 1354–1360 (2013)CrossRefGoogle Scholar
  77. Jiang, C., Tsukruk, V.V.: Freestanding nanostructures via layer-by-layer assembly. Adv. Mater. 18(7), 829–840 (2006)CrossRefGoogle Scholar
  78. Kalkandjiev, K., Gutzweiler, L., Welsche, M., Zengerle, R., Koltay, P.: A novel approach for the fabrication of all-polymer microfluidic devices. In: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1079–1082. IEEE (2010)Google Scholar
  79. Kang, Y.-T., Doh, I., Byun, J., Chang, H.J., Cho, Y.-H.: Label-free rapid viable enrichment of circulating tumor cell by photosensitive polymer-based microfilter device. Theranostics 7(13), 3179 (2017)CrossRefGoogle Scholar
  80. Karadimitriou, N.K., Hassanizadeh, S.M.: A review of micromodels and their use in two-phase flow studies. Vadose Zone J. 11(3), 85 (2012)CrossRefGoogle Scholar
  81. Karadimitriou, N.K., Hassanizadeh, S.M., Joekar-Niasar, V., Kleingeld, P.J.: Micromodel study of two-phase flow under transient conditions: quantifying effects of specific interfacial area. Water Resour. Res. 50(10), 8125–8140 (2014)CrossRefGoogle Scholar
  82. Karadimitriou, N.K., Joekar-Niasar, V., Hassanizadeh, S.M., Kleingeld, P.J., Pyrak-Nolte, L.J.: A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments. Lab Chip 12(18), 3413–3418 (2012)CrossRefGoogle Scholar
  83. Karadimitriou, N.K., et al.: On the fabrication of PDMS micromodels by rapid prototyping, and their use in two-phase flow studies. Water Resour. Res. 49(4), 2056–2067 (2013)CrossRefGoogle Scholar
  84. Kashaninejad, N., et al.: Organ-tumor-on-a-chip for chemosensitivity assay: a critical review. Micromachines 7(8), 130 (2016)CrossRefGoogle Scholar
  85. Kashaninejad, N., Shiddiky, M.J.A., Nguyen, N.-T.: Advances in microfluidics-based assisted reproductive technology: from sperm sorter to reproductive system-on-a-chip. Advanced Biosystems 2(1), 1700197 (2018)CrossRefGoogle Scholar
  86. Kawata, S., Ichimura, T., Taguchi, A., Kumamoto, Y.: Nano-Raman scattering microscopy: resolution and enhancement. Chem. Rev. 117(7), 4983–5001 (2017)CrossRefGoogle Scholar
  87. Kazemifar, F., Blois, G., Kyritsis, D.C., Christensen, K.T.: A methodology for velocity field measurement in multiphase high-pressure flow of CO2 and water in micromodels. Water Resour. Res. 51(4), 3017–3029 (2015)CrossRefGoogle Scholar
  88. Kazemifar, F., Blois, G., Kyritsis, D.C., Christensen, K.T.: Quantifying the flow dynamics of supercritical CO2–water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV. Adv. Water Resour. 95, 352–368 (2016)CrossRefGoogle Scholar
  89. Kazemifar, F., Kyritsis, D.C.: Experimental investigation of near-critical CO2 tube-flow and Joule-Thompson throttling for carbon capture and sequestration. Exp. Therm. Fluid Sci. 53, 161–170 (2014)CrossRefGoogle Scholar
  90. Kim, D., et al.: Reaction-based two-photon probes for in vitro analysis and cellular imaging of monoamine oxidase activity. Chem. Commun. 48(54), 6833–6835 (2012a)CrossRefGoogle Scholar
  91. Kim, H.J., Huh, D., Hamilton, G., Ingber, D.E.: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12), 2165–2174 (2012b)CrossRefGoogle Scholar
  92. Kim, Y., Wan, J., Kneafsey, T.J., Tokunaga, T.K.: Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels. Environ. Sci. Technol. 46(7), 4228–4235 (2012c)CrossRefGoogle Scholar
  93. Kim, H.N., Lee, M.H., Kim, H.J., Kim, J.S., Yoon, J.: A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 37(8), 1465–1472 (2008a)CrossRefGoogle Scholar
  94. Kim, P., Kwon, K.W., Park, M.C., Lee, S.H., Kim, S.M., Suh, K.Y.: Soft lithography for microfluidics: a review. Biochip J. 2(1), 1–11 (2008b)Google Scholar
  95. Kim, H.N., et al.: Rhodamine hydrazone derivatives as Hg2 + selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system. Analyst 136(7), 1339–1343 (2011)CrossRefGoogle Scholar
  96. Kim, Y.J., Kang, Y.-T., Cho, Y.-H.: Poly(ethylene glycol)-modified tapered-slit membrane filter for efficient release of captured viable circulating tumor cells. Anal. Chem. 88(16), 7938–7945 (2016)CrossRefGoogle Scholar
  97. Kim, M., Abedini, A., Lele, P., Guerrero, A., Sinton, D.: Microfluidic pore-scale comparison of alcohol- and alkaline-based SAGD processes. J. Petrol. Sci. Eng. 154, 139–149 (2017)CrossRefGoogle Scholar
  98. King, M.B.B., Mubarak, A., Kim, J.D.D., Bott, T.R.R.: The mutual solubilities of water with supercritical and liquid carbon dioxides. J. Supercrit. Fluids 5(4), 296–302 (1992)CrossRefGoogle Scholar
  99. Kjeang, E., Djilali, N., Sinton, D.: Microfluidic fuel cells: a review. J. Power Sour. 186(2), 353–369 (2009)CrossRefGoogle Scholar
  100. Laerme, F., Schilp, A., Funk, K., Offenberg, M.: Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications. In: 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999. MEMS’99, pp. 211–216. IEEE (1999)Google Scholar
  101. Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (2014)Google Scholar
  102. Le-The, H., et al.: Large-scale fabrication of free-standing and sub-[small mu]m PDMS through-hole membranes. Nanoscale 10(16), 7711–7718 (2018)CrossRefGoogle Scholar
  103. Lee, J.S., et al.: Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J. Matern. Fetal Neonatal Med. 29(7), 1046–1054 (2016)CrossRefGoogle Scholar
  104. Lee Seung, G., Lee, H., Gupta, A., Chang, S., Doyle Patrick, S.: Site-selective in situ grown calcium carbonate micromodels with tunable geometry, porosity, and wettability. Adv. Func. Mater. 26(27), 4896–4905 (2016)CrossRefGoogle Scholar
  105. Lei, K.F.: Chapter 1 Materials and Fabrication Techniques for Nano- and Microfluidic Devices, Microfluidics in Detection Science: Lab-on-a-chip Technologies, pp. 1–28. The Royal Society of Chemistry, New York (2015)Google Scholar
  106. Leis, A.P., Schlicher, S., Franke, H., Strathmann, M.: Optically transparent porous medium for nondestructive studies of microbial biofilm architecture and transport dynamics. Appl. Environ. Microbiol. 71(8), 4801–4808 (2005)CrossRefGoogle Scholar
  107. Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)CrossRefGoogle Scholar
  108. Li, X., Wu, N., Rojanasakul, Y., Liu, Y.: Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications. Sens. Actuators A 193, 186–192 (2013)CrossRefGoogle Scholar
  109. Li, Y., Kazemifar, F., Blois, G., Christensen, K.T.: Micro-PIV measurements of multiphase flow of water and liquid CO2 in 2-D heterogeneous porous micromodels. Water Resour. Res. 53(7), 6178–6196 (2017)CrossRefGoogle Scholar
  110. Lim, L.S., et al.: Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab Chip 12(21), 4388–4396 (2012)CrossRefGoogle Scholar
  111. Liu, N., Aymonier, C., Lecoutre, C., Garrabos, Y., Marre, S.: Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy. Chem. Phys. Lett. 551, 139–143 (2012)CrossRefGoogle Scholar
  112. Liu, M., Shabaninejad, M., Mostaghimi, P.: Impact of mineralogical heterogeneity on reactive transport modelling. Comput. Geosci. 104(Supplement C), 12–19 (2017)Google Scholar
  113. Lu, C., Lee, L.J., Juang, Y.J.: Packaging of microfluidic chips via interstitial bonding technique. Electrophoresis 29(7), 1407–1414 (2008)CrossRefGoogle Scholar
  114. Lu, W., Guo, H., Chou, I.M., Burruss, R.C., Li, L.: Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements. Geochim. Cosmochim. Acta 115, 183–204 (2013)CrossRefGoogle Scholar
  115. Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniaturization. CRC Press, Boca Raton (2002)CrossRefGoogle Scholar
  116. Mahoney, S.A., Rufford, T.E., Dmyterko, A.S.K., Rudolph, V., Steel, K.M.: The effect of rank and lithotype on coal wettability and its application to coal relative permeability models. In: SPE Asia Pacific Unconventional Resources Conference and Exhibition, BrisbaneGoogle Scholar
  117. Mahoney, S.A., et al.: The effect of rank, lithotype and roughness on contact angle measurements in coal cleats. Int. J. Coal Geol. 179, 302–315 (2017)CrossRefGoogle Scholar
  118. Martin, M.M., Lindqvist, L.: The pH dependence of fluorescein fluorescence. J. Lumin. 10(6), 381–390 (1975)CrossRefGoogle Scholar
  119. Martínez-Máñez, R., Sancenón, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103(11), 4419–4476 (2003)CrossRefGoogle Scholar
  120. Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E.: Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2009)CrossRefGoogle Scholar
  121. McDonald, J.C., et al.: Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1), 27–40 (2000)CrossRefGoogle Scholar
  122. Meinhart, C.D., Wereley, S.T., Santiago, J.G.: PIV measurements of a microchannel flow. Exp. Fluids 27(5), 414–419 (1999)CrossRefGoogle Scholar
  123. Mela, P., et al.: Monolayer-functionalized microfluidics devices for optical sensing of acidity. Lab Chip 5(2), 163–170 (2005)CrossRefGoogle Scholar
  124. Moebius, F., Or, D.: Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. J. Colloid Interface Sci. 377(1), 406–415 (2012)CrossRefGoogle Scholar
  125. Moebius, F., Or, D.: Pore scale dynamics underlying the motion of drainage fronts in porous media. Water Resour. Res. 50(11), 8441–8457 (2014)CrossRefGoogle Scholar
  126. Moghadas, H., Saidi, M.S., Kashaninejad, N., Kiyoumarsioskouei, A., Nguyen, N.-T.: Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture. Biomed. Microdevice 19(4), 74 (2017a)CrossRefGoogle Scholar
  127. Moghadas, H., Saidi, M.S., Kashaninejad, N., Nguyen, N.-T.: Challenge in particle delivery to cells in a microfluidic device. Drug Deliv. Transl. Res. (2017b).  https://doi.org/10.1007/s13346-017-0467-3 CrossRefGoogle Scholar
  128. Moghadas, H., Saidi, M.S., Kashaninejad, N., Nguyen, N.-T.: A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab on a chip. Biomicrofluidics 12(2), 024117 (2018)CrossRefGoogle Scholar
  129. Mohammadzadeh, O., Chatzis, I.: Analysis of the heat losses associated with the SAGD visualization experiments. J. Petrol. Explor. Prod. Technol. 6(3), 387–400 (2016)CrossRefGoogle Scholar
  130. Mohammadzadeh, O., Rezaei, N., Chatzis, I.: Pore-level investigation of heavy oil and Bitumen recovery using solvent—aided steam assisted gravity drainage (SA-SAGD) process. Energy Fuels 24(12), 6327–6345 (2010)CrossRefGoogle Scholar
  131. Moraes, C., Mehta, G., Lesher-Perez, S.C., Takayama, S.: Organs-on-a-chip: a focus on compartmentalized microdevices. Ann. Biomed. Eng. 40(6), 1211–1227 (2012)CrossRefGoogle Scholar
  132. Morais, S., Diouf, A., Lecoutre, C., Bernard, D., Garrabos, Y., Marre, S.: Geological labs on chip-new tools for investigating key aspects of CO2 geological storage. In: The Third Sustainable Earth Sciences Conference and Exhibition (2015)Google Scholar
  133. Morais, S., et al.: Monitoring CO2 invasion processes at the pore scale using geological labs on chip. Lab Chip 16(18), 3493–3502 (2016)CrossRefGoogle Scholar
  134. Morin, B., Liu, Y., Alvarado, V., Oakey, J.: A microfluidic flow focusing platform to screen the evolution of crude oil-brine interfacial elasticity. Lab Chip 16(16), 3074–3081 (2016)CrossRefGoogle Scholar
  135. Moshksayan, K., et al.: Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens. Actuators B Chem. 263, 151–176 (2018)CrossRefGoogle Scholar
  136. Myers, D.R., et al.: Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J. Vis. Exp. (JoVE) 64, 3958 (2012)Google Scholar
  137. Nan, Z., et al.: Manufacturing microstructured tool inserts for the production of polymeric microfluidic devices. J. Micromech. Microeng. 25(9), 095005 (2015)CrossRefGoogle Scholar
  138. Nguyen, C., Kothamasu, R., He, K., Xu, L.: Low-Salinity Brine Enhances Oil Production in Liquids-Rich Shale Formations. Society of Petroleum Engineers, London (2015)CrossRefGoogle Scholar
  139. Nguyen, N.-T., Hejazian, M., Ooi, C.H., Kashaninejad, N.: Recent advances and future perspectives on microfluidic liquid handling. Micromachines 8, 186 (2017)CrossRefGoogle Scholar
  140. Nguyen, N.-T., Shaegh, S.A.M., Kashaninejad, N., Phan, D.-T.: Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 65(11–12), 1403–1419 (2013)CrossRefGoogle Scholar
  141. Nieskens, T.T., Wilmer, M.J.: Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur. J. Pharmacol. 790, 46–56 (2016)CrossRefGoogle Scholar
  142. Nolan, E.M., Lippard, S.J.: Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108(9), 3443–3480 (2008)CrossRefGoogle Scholar
  143. Nordbotten, J.M., Celia, M.A., Bachu, S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58(3), 339–360 (2005)CrossRefGoogle Scholar
  144. Oh, Y.S., Jo, H.Y., Ryu, J.-H., Kim, G.-Y.: A microfluidic approach to water–rock interactions using thin rock sections: Pb and U sorption onto thin shale and granite sections. J. Hazard. Mater. B 324, 373–381 (2017)CrossRefGoogle Scholar
  145. Ohno, K.I., Tachikawa, K., Manz, A.: Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22), 4443–4453 (2008)CrossRefGoogle Scholar
  146. Olsen, M.G., Adrian, R.J.: Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids 29(7), S166–S174 (2000)CrossRefGoogle Scholar
  147. Pacala, S., Socolow, R.: Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686), 968–972 (2004)CrossRefGoogle Scholar
  148. Paguirigan, A.L., Beebe, D.J.: Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 30(9), 811–821 (2008)CrossRefGoogle Scholar
  149. Pei, H., Zhang, G., Ge, J., Jin, L., Ma, C.: Potential of alkaline flooding to enhance heavy oil recovery through water-in-oil emulsification. Fuel 104, 284–293 (2013)CrossRefGoogle Scholar
  150. Pensabene, V., et al.: Ultrathin polymer membranes with patterned, micrometric pores for organs-on-chips. ACS Appl. Mater. Interfaces 8(34), 22629–22636 (2016)CrossRefGoogle Scholar
  151. Porter, M.L., et al.: Fundamental Investigation of Gas Injection in Microfluidic Shale Fracture Networks at Geologic Conditions. American Rock Mechanics Association, New York (2015a)Google Scholar
  152. Porter, M.L., et al.: Geo-material microfluidics at reservoir conditions for subsurface energy resource applications. Lab Chip 15, 4044–4053 (2015b)CrossRefGoogle Scholar
  153. Prodanov, L., et al.: Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol. Bioeng. 113(1), 241–246 (2016)CrossRefGoogle Scholar
  154. Qin, N., Wen, J.Z., Ren, C.L.: Highly pressurized partially miscible liquid–liquid flow in a micro-T-junction. I. Exp. Obser. Phys. Rev. E 95(4), 043110 (2017)CrossRefGoogle Scholar
  155. Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer, Berlin (2013)Google Scholar
  156. Rangel-German, E., Kovscek, A.: A micromodel investigation of two-phase matrix-fracture transfer mechanisms. Water Resour. Res. 42(3), 1 (2006)CrossRefGoogle Scholar
  157. Rindfleisch, F., DiNoia, T.P., McHugh, M.A.: Solubility of polymers and copolymers in supercritical CO2. J. Phys. Chem. 100(38), 15581–15587 (1996)CrossRefGoogle Scholar
  158. Rodríguez, S.J., Bishop, P.L.: Three-dimensional quantification of soil biofilms using image analysis. Environ. Eng. Sci. 24(1), 96–103 (2007)CrossRefGoogle Scholar
  159. Sackmann, E.K., Fulton, A.L., Beebe, D.J.: The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014)CrossRefGoogle Scholar
  160. Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids 25(4), 316–319 (1998)CrossRefGoogle Scholar
  161. Sato, Y., et al.: Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilib. 162(1–2), 261–276 (1999)CrossRefGoogle Scholar
  162. Schmidt, M.A.: Wafer-to-wafer bonding for microstructure formation. Proc. IEEE 86(8), 1575–1585 (1998)CrossRefGoogle Scholar
  163. Schwartz, G., Schaible, P.: Reactive ion etching of silicon. J. Vac. Sci. Technol. 16(2), 410–413 (1979)CrossRefGoogle Scholar
  164. Seah, Y.F.S., Hu, H., Merten, C.A.: Microfluidic single-cell technology in immunology and antibody screening. Mol. Aspects Med. 59, 47–61 (2017)CrossRefGoogle Scholar
  165. Seah, Y.F.S., Hu, H., Merten, C.A.: Microfluidic single-cell technology in immunology and antibody screening. Mol. Aspects Med. 59, 47–61 (2018)CrossRefGoogle Scholar
  166. Sedaghat, M., Mohammadzadeh, O., Kord, S., Chatzis, I.: Heavy oil recovery using ASP flooding: a pore-level experimental study in fractured five-spot micromodels. Can. J. Chem. Eng. 94(4), 779–791 (2016)CrossRefGoogle Scholar
  167. Sell, A., Fadaei, H., Kim, M., Sinton, D.: Measurement of CO2 diffusivity for carbon sequestration: a microfluidic approach for reservoir-specific analysis. Environ. Sci. Technol. 47(1), 71–78 (2013)CrossRefGoogle Scholar
  168. Shirota, H., Castner Jr., E.W.: Solvation in highly nonideal solutions: a study of aqueous 1-propanol using the coumarin 153 probe. J. Chem. Phys. 112(5), 2367 (2000)CrossRefGoogle Scholar
  169. Shiu, P.P., Knopf, G.K., Ostojic, M., Nikumb, S.: Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing. J. Micromech. Microeng. 18(2), 025012 (2008)CrossRefGoogle Scholar
  170. Sieben, V., Kharrat, A.M., Mostowfi, F.: Novel measurement of asphaltene content in oil using microfluidic technology. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, New Orleans (2013)Google Scholar
  171. Silverio, V., de Freitas, S.C.: Microfabrication Techniques for Microfluidic Devices, Complex Fluid-Flows in Microfluidics, pp. 25–51. Springer, Berlin (2018)CrossRefGoogle Scholar
  172. Singh, R., et al.: Real rock-microfluidic flow cell: a test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment. J. Contam. Hydrol. 204, 28–39 (2017)CrossRefGoogle Scholar
  173. Singh, R., et al.: Metabolism-induced CaCO3 biomineralization during reactive transport in a micromodel: implications for porosity alteration. Environ. Sci. Technol. 49(20), 12094–12104 (2015)CrossRefGoogle Scholar
  174. Sinton, D.: Energy: the microfluidic frontier. Lab Chip 14(17), 3127–3134 (2014)CrossRefGoogle Scholar
  175. Song, W., de Haas, T.W., Fadaei, H., Sinton, D.: Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels. Lab Chip 14(22), 4382–4390 (2014)CrossRefGoogle Scholar
  176. Song, W., Kovscek, A.R.: Functionalization of micromodels with kaolinite for investigation of low salinity oil-recovery processes. Lab Chip 15(16), 3314–3325 (2015)CrossRefGoogle Scholar
  177. Song, W., Kovscek, A.R.: Direct visualization of pore-scale fines migration and formation damage during low-salinity waterflooding. J. Nat. Gas Sci. Eng. 34, 1276–1283 (2016)CrossRefGoogle Scholar
  178. Stephan, K., et al.: Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. J. Micromech. Microeng. 17(10), N69 (2007)CrossRefGoogle Scholar
  179. Stevenson, J.T.M., Gundlach, A.M.: The application of photolithography to the fabrication of microcircuits. J. Phys. E: Sci. Instrum. 19(9), 654 (1986)CrossRefGoogle Scholar
  180. Syed, A.H., et al.: A combined method for pore-scale optical and thermal characterization of SAGD. J. Petrol. Sci. Eng. 146, 866–873 (2016)CrossRefGoogle Scholar
  181. Tan, S.H., Nguyen, N.-T., Chua, Y.C., Kang, T.G.: Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3), 032204 (2010)CrossRefGoogle Scholar
  182. Tanino, Y., Zacarias-Hernandez, X., Christensen, M.: Oil/water displacement in microfluidic packed beds under weakly water-wetting conditions: competition between precursor film flow and piston-like displacement. Exp. Fluids 59(2), 35 (2018)CrossRefGoogle Scholar
  183. Trietsch, S.J., Hankemeier, T., van der Linden, H.J.: Lab-on-a-chip technologies for massive parallel data generation in the life sciences: a review. Chemometr. Intell. Lab. Syst. 108(1), 64–75 (2011)CrossRefGoogle Scholar
  184. Tropea, C., Yarin, A.L., Foss, J.F.: Springer Handbook of Experimental Fluid Mechanics. Springer, Berlin (2007)CrossRefGoogle Scholar
  185. Tsao, C.-W., DeVoe, D.L.: Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6(1), 1–16 (2009)CrossRefGoogle Scholar
  186. Unsal, E., Broens, M., Armstrong, R.T.: Pore scale dynamics of microemulsion formation. Langmuir 32(28), 7096–7108 (2016)CrossRefGoogle Scholar
  187. van der Helm, M.W., van der Meer, A.D., Eijkel, J.C., van den Berg, A., Segerink, L.I.: Microfluidic organ-on-chip technology for blood–brain barrier research. Tissue Barriers 4(1), e1142493 (2016)CrossRefGoogle Scholar
  188. Verpoorte, E., De Rooij, N.F.: Microfluidics meets MEMS. Proc. IEEE 91(6), 930–953 (2003)CrossRefGoogle Scholar
  189. Vladisavljević, G.T., Kobayashi, I., Nakajima, M.: Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid. Nanofluid. 13(1), 151–178 (2012)CrossRefGoogle Scholar
  190. Volpatti, L.R., Yetisen, A.K.: Commercialization of microfluidic devices. Trends Biotechnol. 32(7), 347–350 (2014)CrossRefGoogle Scholar
  191. Wang, W., Chang, S., Gizzatov, A.: Toward reservoir-on-a-chip: fabricating reservoir micromodels by in situ growing calcium carbonate nanocrystals in microfluidic channels. ACS Appl. Mater. Interfaces 9(34), 29380–29386 (2017)CrossRefGoogle Scholar
  192. Wang, X., Ding, B., Li, B.: Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today 16(6), 229–241 (2013a)CrossRefGoogle Scholar
  193. Wang, Y., et al.: Application of microfluidic technology for studying islet physiology and pathophysiology. Micro Nanosyst. 5(3), 216–223 (2013b)CrossRefGoogle Scholar
  194. Wang, Y., et al.: Experimental study of crossover from capillary to viscous fingering for supercritical CO2–water displacement in a homogeneous pore network. Environ. Sci. Technol. 47(1), 212–218 (2013c)CrossRefGoogle Scholar
  195. Warkiani, M.E., et al.: Capturing and recovering of Cryptosporidium parvum oocysts with polymeric micro-fabricated filter. J. Membr. Sci. 369(1), 560–568 (2011)CrossRefGoogle Scholar
  196. Warkiani, M.E., et al.: Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14(1), 128–137 (2014a)CrossRefGoogle Scholar
  197. Warkiani, M.E., et al.: An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139(13), 3245–3255 (2014b)CrossRefGoogle Scholar
  198. Webb, K.F., Teja, A.S.: Solubility and diffusion of carbon dioxide in polymers. Fluid Phase Equilib. 158–160(1), 1029–1034 (1999)CrossRefGoogle Scholar
  199. Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8(12), 1379 (1997)CrossRefGoogle Scholar
  200. White, C.M., et al.: Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds. J. Air Waste Manag. Assoc. 53(6), 645–715 (2003)CrossRefGoogle Scholar
  201. Whitesides, G.: The origins and the future of microfluidics. Nature 442, 368–373 (2006a)CrossRefGoogle Scholar
  202. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006b)CrossRefGoogle Scholar
  203. Wiebe, R., Gaddy, V.L.: The solubility of carbon dioxide in water at various temperatures from 12° to 40° and at pressures to 500 atmospheres. Critical phenomena. J. Am. Chem. Soc. 62(4), 815–817 (1940)CrossRefGoogle Scholar
  204. Wong, I., Ho, C.-M.: Surface molecular property modifications for poly(dimethylsiloxane)(PDMS) based microfluidic devices. Microfluid. Nanofluid. 7(3), 291–306 (2009)CrossRefGoogle Scholar
  205. Wu, B., Kumar, A., Pamarthy, S.: High aspect ratio silicon etch: a review. J. Appl. Phys. 108(5), 9 (2010)Google Scholar
  206. Xu, B., et al.: High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Sci. Rep. 6, 19989 (2016)CrossRefGoogle Scholar
  207. Xu, R., Li, R., Huang, F., Jiang, P.: Pore-scale visualization on a depressurization-induced CO2 exsolution. Sci. Bull. 62, 795–803 (2017)CrossRefGoogle Scholar
  208. Xu, W., Ok, J.T., Xiao, F., Neeves, K.B., Yin, X.: Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs. Phys. Fluids 26(9), 093102 (2014)CrossRefGoogle Scholar
  209. Yadali Jamaloei, B., Kharrat, R.: Analysis of microscopic displacement mechanisms of dilute surfactant flooding in oil-wet and water-wet porous media. Transp. Porous Media 81(1), 1 (2009)CrossRefGoogle Scholar
  210. Yang, S.Y., et al.: Single-file diffusion of protein drugs through cylindrical nanochannels. ACS Nano 4(7), 3817–3822 (2010)CrossRefGoogle Scholar
  211. Yang, Y.-K., Yook, K.-J., Tae, J.: A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2 + ions in aqueous media. J. Am. Chem. Soc. 127(48), 16760–16761 (2005)CrossRefGoogle Scholar
  212. Yaozhong, Z., Jea-Hyeoung, H., Likun, Z., Mark, A.S., Junghoon, Y.: Soft lithographic printing and transfer of photosensitive polymers: facile fabrication of free-standing structures and patterning fragile and unconventional substrates. J. Micromech. Microeng. 24(11), 115019 (2014)CrossRefGoogle Scholar
  213. Yoon, H., Valocchi, A.J., Werth, C.J., Dewers, T.: Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network. Water Resour. Res. 48(2), W02524 (2012)CrossRefGoogle Scholar
  214. Yoon, J.-Y., Kim, B.: Lab-on-a-chip pathogen sensors for food safety. Sensors 12(8), 10713–10741 (2012)CrossRefGoogle Scholar
  215. Zarikos, I.M., Hassanizadeh, S.M., van Oosterhout, L.M., van Oordt, W.: Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors. Transport in Porous Media, New York (2018)CrossRefGoogle Scholar
  216. Zevi, Y., Dathe, A., McCarthy, J.F., Richards, B.K., Steenhuis, T.S.: Distribution of colloid particles onto interfaces in partially saturated sand. Environ. Sci. Technol. 39(18), 7055–7064 (2005)CrossRefGoogle Scholar
  217. Zhang, C., Oostrom, M., Grate, J.W., Wietsma, T.W., Warner, M.G.: Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environ. Sci. Technol. 45(17), 7581–7588 (2011)CrossRefGoogle Scholar
  218. Zhang, J., Chen, K., Fan, Z.H.: Chapter one-circulating tumor cell isolation and analysis. In: Makowski, G.S. (ed.) Advances in Clinical Chemistry, pp. 1–31. Elsevier, Amsterdam (2016)Google Scholar
  219. Zhang, Q., Karadimitriou, N.K., Hassanizadeh, S.M., Kleingeld, P.J., Imhof, A.: Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. J. Colloid Interface Sci. 401, 141–147 (2013)CrossRefGoogle Scholar
  220. Zhang, W., et al.: Liquid biopsy for cancer: circulating tumor cells, circulating free DNA or exosomes? Cell. Physiol. Biochem. 41(2), 755–768 (2017)CrossRefGoogle Scholar
  221. Zhang, Y., Sanati-Nezhad, A., Hejazi, S.: Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications. Lab Chip 18(2), 285–295 (2018)CrossRefGoogle Scholar
  222. Zhao, B., MacMinn, C.W., Juanes, R.: Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. 113(37), 10251–10256 (2016)CrossRefGoogle Scholar
  223. Zheng, X., Mahabadi, N., Yun, T.S., Jang, J.: Effect of capillary and viscous force on CO2 saturation and invasion pattern in the microfluidic chip. J. Geophys. Res. Solid Earth 122(3), 1634–1647 (2017)Google Scholar
  224. Zuo, L., Zhang, C., Falta, R.W., Benson, S.M.: Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks. Adv. Water Resour. 53(6), 188–197 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Minerals and Energy Resources EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.School of Biomedical EngineeringUniversity Technology SydneySydneyAustralia
  3. 3.Department of Mechanical EngineeringCalifornia State University SacramentoSacramentoUSA
  4. 4.Australian School of PetroleumUniversity of AdelaideAdelaideAustralia
  5. 5.Faculty of Engineering and TechnologyMuscat UniversityMuscatOman
  6. 6.Institute of Molecular MedicineSechenov First Moscow State UniversityMoscowRussia

Personalised recommendations