Advertisement

Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions

  • Ryan T. ArmstrongEmail author
  • James E. McClure
  • Vanessa Robins
  • Zhishang Liu
  • Christoph H. Arns
  • Steffen Schlüter
  • Steffen Berg
Article

Abstract

An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only does the fraction of void space matter for permeability but also the connectivity of the void fraction. With the evolution of modern day X-ray microcomputed tomography (micro-CT) and advanced computing, it is now possible to visualize porous media at an unprecedented level of detail. Approaches in analyzing micro-CT data of porous structures vary in the literature from phenomenological characterization to network analysis to geometrical and/or topological measurements. This leads to a question about how to consistently characterize porous media in a way that facilitates theoretical developments. In this effort, the Minkowski functionals (MF) emerge from the field of statistical physics where it is evident that many physical processes depend on the geometry and topology of bodies or multiple bodies in 3D space. Herein we review the theoretical basis of the MF, mathematical theorems and methods necessary for porous media characterization, common measurement errors when using micro-CT data and recent findings relating the MF to macroscale porous media properties. This paper is written to provide the basics necessary for porous media characterization and theoretical developments. With the wealth of information generated from 3D imaging of porous media, it is necessary to develop an understanding of the limitations and opportunities in this exciting area of research.

Keywords

Minkowski functionals X-ray microcomputed tomography Pore morphology Euler characteristic Persistence homology 

Notes

Acknowledgements

We thank the Tyree X-Ray Laboratory in the School of Minerals and Energy Resources Engineering, UNSW for assistance with image collection and data processing. Professors Stephen Foster (fiber-reinforced concrete) and Melissa Knothe-Tate and Dr. Tzong-Tyng Hung (mouse leg) are acknowledged for graciously sharing their microtomography data. We thank Ji-Youn Arns and Zhenghuai Guo for their persistence in contrast optimization for the mouse leg and visualization of the fiber-reinforced concrete samples. Funding was provided from the Australian Research Council Discovery Grant DP160104995. VR is supported by ARC Future Fellowship FT140100604. An award of computer time was provided by the Department of Energy INCITE program. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

References

  1. Abbena, E., Salamon, S., Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press, Boca Raton (2017)Google Scholar
  2. Adler, P.M., Jacquin, C.G., Thovert, J.F.: The formation factor of reconstructed porous media. Water Resour. Res. 28(6), 1571 (1992)CrossRefGoogle Scholar
  3. Anderson, E.J., Kreuzer, S.M., Small, O., Tate, M.L.K.: Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro-and nano-scale pericellular spaces. Microfluid. Nanofluid. 4(3), 193 (2008)CrossRefGoogle Scholar
  4. Andersson, L.: Defining a novel pore-body to pore-throat morphological aspect ratio that scales with residual non-wetting phase capillary trapping in porous media. Adv. Water Resour. (2018)Google Scholar
  5. Ardanza-Trevijano, S., Zuriguel, I., Arvalo, R., Maza, D.: Topological analysis of tapped granular media using persistent homology. Phys. Rev. E 89(5), 052212 (2014).  https://doi.org/10.1103/PhysRevE.89.052212 CrossRefGoogle Scholar
  6. Armstrong, R.T., Porter, M.L., Wildenschild, D.: Linking pore-scale interfacial curvature to column-scale capillary pressure. Adv. Water Resour. 46, 55 (2012)CrossRefGoogle Scholar
  7. Armstrong, R.T., Georgiadis, A., Ott, H., Klemin, D., Berg, S.: Critical capillary number: desaturation studied with fast X-ray computed microtomography. Geophys. Res. Lett. 41(1), 55 (2014)CrossRefGoogle Scholar
  8. Armstrong, R.T., McClure, J.E., Berrill, M.A., Rücker, M., Schlüter, S., Berg, S.: Beyond Darcy’s law: the role of phase topology and ganglion dynamics for two-fluid flow. Phys. Rev. E 94(4), 043113 (2016)CrossRefGoogle Scholar
  9. Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Mecke, K.R.: Euler-Poincaré characteristics of classes of disordered media. Phys. Rev. E 63(3), 031112 (2001)CrossRefGoogle Scholar
  10. Bañados, M., Teitelboim, C., Zanelli, J.: Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem. Phys. Rev. Lett. 72(7), 957 (1994)CrossRefGoogle Scholar
  11. Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, North Chelmsford (2013)Google Scholar
  12. Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.O., et al.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Nat. Acad. Sci. 110(10), 3755 (2013)CrossRefGoogle Scholar
  13. Berg, S., Rücker, M., Ott, H., Georgiadis, A., van der Linde, H., Enzmann, F., Kersten, M., Armstrong, R., Becker, J., Wiegmann, A., et al.: Connected pathway relative permeability from pore-scale imaging of imbibition. Adv. Water Resour. 90, 24 (2016)CrossRefGoogle Scholar
  14. Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107(20), 204502 (2011)CrossRefGoogle Scholar
  15. Blunt, M.J.: Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  16. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197 (2013)CrossRefGoogle Scholar
  17. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255 (2009)CrossRefGoogle Scholar
  18. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71 (2009).  https://doi.org/10.1007/s00454-009-9176-0 CrossRefGoogle Scholar
  19. Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543 (2013).  https://doi.org/10.1002/mma.2704 CrossRefGoogle Scholar
  20. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103 (2007)CrossRefGoogle Scholar
  21. Darcy, H.: Les fontaines publiques de la ville de Dijon: exposition et application... (Victor Dalmont, 1856)Google Scholar
  22. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: In: 2014 IEEE International Conference on Image Processing (ICIP) (2014), pp. 4872–4876.  https://doi.org/10.1109/ICIP.2014.7025987
  23. Delgado-Friedrichs, O.: Diamorse—Digital image analysis using discrete Morse theory and persistent homology (2016). https://github.com/AppliedMathematicsANU/diamorse
  24. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654 (2015).  https://doi.org/10.1109/TPAMI.2014.2346172 CrossRefGoogle Scholar
  25. Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009)CrossRefGoogle Scholar
  26. Dullien, F.A.: Porous Media: Fluid Transport and Pore Structure. Academic Press, Cambridge (2012)Google Scholar
  27. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453, 257 (2008)CrossRefGoogle Scholar
  28. Edelsbrunner, H., Harer, J.: Computational Topology: An introduction. American Mathematical Society, Providence, Rhode Island (2010)Google Scholar
  29. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511 (2002).  https://doi.org/10.1007/s00454-002-2885-2 CrossRefGoogle Scholar
  30. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse–Smale complexes for piecewise linear 2-manifolds. Discrete Comput Geom 30(1), 87 (2003).  https://doi.org/10.1007/s00454-003-2926-5 CrossRefGoogle Scholar
  31. Falconer, R.E., Houston, A.N., Otten, W., Baveye, P.C.: Emergent behavior of soil fungal dynamics: influence of soil architecture and water distribution. Soil Sci. 177(2), 111 (2012)CrossRefGoogle Scholar
  32. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418 (1959)CrossRefGoogle Scholar
  33. Fredrich, J., Greaves, K., Martin, J.: Pore geometry and transport properties of Fontainebleau sandstone. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 691–697 (1993)CrossRefGoogle Scholar
  34. Gray, W.G., Miller, : In: AGEM\(^2\)) (Springer, (ed.) Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Advances in Geophysical and Environmental Mechanics and. Mathematics, C.T.: In (2014)Google Scholar
  35. Grimm, V.: Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115(2–3), 129 (1999)CrossRefGoogle Scholar
  36. Groot, S.D., Mazur, P.: Non-Equilibrium Thermodynamics. North-Holland Publishing Company, Oxford (1962)Google Scholar
  37. Gyulassy, A.G., Duchaineau, M.A., Natarajan, V., Pascucci, V., Bringa, E.M., Higginbotham, A., Hamann, B.: Topologically clean distance fields. IEEE Trans. Vis. Comput. Gr. 13(6), 1432 (2007).  https://doi.org/10.1109/TVCG.2007.70603 CrossRefGoogle Scholar
  38. Gyulassy, A., Bremer, P., Pascucci, V.: Computing Morse–Smale complexes with accurate geometry. IEEE Trans. Vis. Comput. Gr. 18(12), 2014 (2012).  https://doi.org/10.1109/TVCG.2012.209 CrossRefGoogle Scholar
  39. Hadwiger, H.: Vorlesungen tiber inhalt, oberfläche und isoperirnetrie (1957)Google Scholar
  40. Haines, W.B.: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20(1), 97 (1930)CrossRefGoogle Scholar
  41. Hansen, A., Sinha, S., Bedeaux, D., Kjelstrup, S., Savani, I., Vassvik, M.: arXiv preprint arXiv:1605.02874 (2016)
  42. Herring, A., Robins, V., Saadatfar, M., Young, B. Knackstedt, M., Sheppard, A.: (2018)Google Scholar
  43. Herring, A.L., Harper, E.J., Andersson, L., Sheppard, A., Bay, B.K., Wildenschild, D.: Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic CO2 sequestration. Adv. Water Res. 62, 47 (2013)CrossRefGoogle Scholar
  44. Herring, A.L., Andersson, L., Schlüter, S., Sheppard, A., Wildenschild, D.: Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media. Adv. Water Resour. 79, 91 (2015)CrossRefGoogle Scholar
  45. Hilfer, R.: Macroscopic capillarity and hysteresis for flow in porous media. Phys. Rev. E 73(1), 016307 (2006)CrossRefGoogle Scholar
  46. Hilpert, M., Miller, C.T.: Pore-morphology-based simulation of drainage in totally wetting porous media. Adv. Water Resour. 24(3–4), 243 (2001)CrossRefGoogle Scholar
  47. Hilpert, M., Miller, C.T., Gray, W.G.: Stability of a fluid-fluid interface in a biconical pore segment. J. Colloid Interface Sci. 267(2), 397 (2003)CrossRefGoogle Scholar
  48. Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E.G., Matsue, K., Nishiura, Y.: In: Proceedings of the National Academy of Sciences p. 201520877 (2016)Google Scholar
  49. Hyde, S., Barnes, I., Ninham, B.: Curvature energy of surfactant interfaces confined to the plaquettes of a cubic lattice. Langmuir 6(6), 1055 (1990)CrossRefGoogle Scholar
  50. Iglauer, S., Paluszny, A., Pentland, C.H., Blunt, M.J.: Residual CO2 imaged with X-ray micro-tomography. Geophys. Res. Lett. 38(21) (2011)CrossRefGoogle Scholar
  51. Iuricich, F., Scaramuccia, S., Landi, C., L., : De Floriani, in SIGGRAPH ASIA 2016 Symposium on Visualization (ACM, vol, vol. SA ’16, p. pp. 5:1–5:, 8, New York, NY, USA (2016).  https://doi.org/10.1145/3002151.3002166
  52. Jiao, Y., Stillinger, F., Torquato, S.: A superior descriptor of random textures and its predictive capacity. Proc. Nat. Acad. Sci. 106(42), 17634 (2009)CrossRefGoogle Scholar
  53. Jones, A.C., Milthorpe, B., Averdunk, H., Limaye, A., Senden, T.J., Sakellariou, A., Sheppard, A.P., Sok, R.M., Knackstedt, M.A., Brandwood, A., et al.: Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25(20), 4947 (2004)CrossRefGoogle Scholar
  54. Jones, A.C., Arns, C.H., Sheppard, A.P., Hutmacher, D.W., Milthorpe, B.K., Knackstedt, M.A.: Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28(15), 2491 (2007)CrossRefGoogle Scholar
  55. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1 (1966)CrossRefGoogle Scholar
  56. Kapfer, S.C., Hyde, S.T., Mecke, K., Arns, C.H., Schröder-Turk, G.E.: Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29), 6875 (2011)CrossRefGoogle Scholar
  57. Karadimitriou, N., Hassanizadeh, S., Joekar-Niasar, V., Kleingeld, P.: Micromodel study of two-phase flow under transient conditions: quantifying effects of specific interfacial area. Water Resour. Res. 50(10), 8125 (2014)CrossRefGoogle Scholar
  58. Katz, A., Thompson, A.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34(11), 8179 (1986)CrossRefGoogle Scholar
  59. Khanamiri, H., Berg, C.F., Slotte, P.A.,Torster, O., Schlẗer, S.: Description of free energy for immiscibletwo-fluid flow in porous media by integral geometry andthermodynamics. Water Res. Res. (in press)Google Scholar
  60. Khanamiri, H.H., Torsæter, O.: Water Resour. ResGoogle Scholar
  61. Kimura, M., Obayashi, I., Takeichi, Y., Murao, R., Hiraoka, Y.: Non-empirical identification of trigger sites in heterogeneous processes using persistent homology. Sci. Rep. 8(1), 3553 (2018).  https://doi.org/10.1038/s41598-018-21867-z CrossRefGoogle Scholar
  62. Klain, D.A.: A short proof of Hadwiger’s characterization theorem. Mathematika 42(2), 329 (1995)CrossRefGoogle Scholar
  63. Knackstedt, M.A., Arns, C.H., Senden, T.J., Gross, K.: Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials 27(13), 2776 (2006)CrossRefGoogle Scholar
  64. Knothe, M.T.: Whither flows the fluid in bone? An osteocyte’s perspective. J. Biomech. 36(10), 1409 (2003)CrossRefGoogle Scholar
  65. Koebernick, N., Weller, U., Huber, K., Schlüter, S., Vogel, H.J., Jahn, R., Vereecken, H., Vetterlein, D.: In situ visualization and quantification of three-dimensional root system architecture and growth using X-ray computed tomography. Vadose Zone J 13(8) (2014)CrossRefGoogle Scholar
  66. Kramar, M., Goullet, A., Kondic, L., Mischaikow, K.: Quantifying force networks in particulate systems. Phys. D: Nonlinear Phenom. 283, 37 (2014).  https://doi.org/10.1016/j.physd.2014.05.009 CrossRefGoogle Scholar
  67. Kramar, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., Schatz, M.F., Mischaikow, K.: Topology in dynamics, differential equations, and data. Phys. D: Nonlinear Phenom. 334, 82 (2016).  https://doi.org/10.1016/j.physd.2016.02.003 CrossRefGoogle Scholar
  68. Kumahor, S., de Rooij, G., Schlüter, S., Vogel, H.J.: Water flow and solute transport in unsaturated sanda—comprehensive experimental approach. Vadose Zone J. 14(2) (2015)CrossRefGoogle Scholar
  69. Laney, D., Bremer, P.T., Mascarenhas, A., Miller, P., Pascucci, V.: Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Vis. Comput. Graph. 12, 1053 (2006)CrossRefGoogle Scholar
  70. Lang, C., Ohser, J., Hilfer, R.: On the analysis of spatial binary images. J. Microsc. 203(3), 303 (2001)CrossRefGoogle Scholar
  71. Lee, Y., Barthel, S.D., Dłotko, P., Moosavi, S.M., Hess, K., Smit, B.: arXiv preprint arXiv:1701.06953 (2017)
  72. Legland, D., Kiêu, K., Devaux, M.F.: Computation of Minkowski measures on 2D and 3D binary images. Image Anal. Stereol. 26(2), 83 (2011)CrossRefGoogle Scholar
  73. Leverett, M., et al.: Capillary behavior in porous solids. Trans. AIME 142(01), 152 (1941)CrossRefGoogle Scholar
  74. Li, T., Schlüter, S., Dragila, M.I., Wildenschild, D.: An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase. Adv. Water Resour. 114, 249 (2018)CrossRefGoogle Scholar
  75. Liu, Z., Herring, A., Robins, V.: R. In: International Symposium of the Society of Core Analysts, Armstrong (2017)Google Scholar
  76. Liu, Z., Herring, A., Arns, C., Berg, S., Armstrong, R.T.: Pore-scale characterization of two-phase flow using integral geometry. Transp. Porous Media 118(1), 99 (2017)CrossRefGoogle Scholar
  77. Mantz, H., Jacobs, K., Mecke, K.: Utilizing Minkowski functionals for image analysis: a marching square algorithm. J. Stat. Mech. Theory Exp. 2008(12), P12015 (2008)CrossRefGoogle Scholar
  78. Matsumoto, Y.: An Introduction to Morse Theory. AMS Bookstore, Providence, RI (2002)Google Scholar
  79. McClure, J.E., Prins, J.F., Miller, C.T.: A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU–GPU systems. Comput. Phys. Commun. 185(7), 1865 (2014)CrossRefGoogle Scholar
  80. McClure, J.E., Berrill, M.A., Gray, W.G., Miller, C.T.: Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems. Phys. Rev. E 94(3), 033102 (2016)CrossRefGoogle Scholar
  81. McClure, J.E., Armstrong, R.T., Berrill, M.A., Schlüter, S., Berg, S., Gray, W.G., Miller, C.T.: Geometric state function for two-fluid flow in porous media. Phys. Rev. Fluids 3, 084306 (2018).  https://doi.org/10.1103/PhysRevFluids.3.084306 CrossRefGoogle Scholar
  82. Mecke, K.R.: Integral geometry in statistical physics. Int. J. Mod. Phys. B 12(09), 861 (1998)CrossRefGoogle Scholar
  83. Mecke, K.R.: Statistical Physics and Spatial Statistics, pp. 111–184. Springer, Berlin (2000)CrossRefGoogle Scholar
  84. Mecke, K.R., Sofonea, V.: Morphology of spinodal decomposition. Phys. Rev. E 56(4), R3761 (1997)CrossRefGoogle Scholar
  85. Mecke, K., Wagner, H.: Euler characteristic and related measures for random geometric sets. J. Stat. Phys. 64(3–4), 843 (1991)CrossRefGoogle Scholar
  86. Michielsen, K., De Raedt, H.: Integral-geometry morphological image analysis. Phys. Rep. 347(6), 461 (2001)CrossRefGoogle Scholar
  87. Mosser, L., Dubrule, O., Blunt, M.J.: arXiv preprint arXiv:1712.02854 (2017)
  88. Nagel, W., Ohser, J., Pischang, K.: An integral-geometric approach for the Euler–Poincaré characteristic of spatial images. J. Microsc. 198(1), 54 (2000)CrossRefGoogle Scholar
  89. Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science. Wiley, Hoboken (2000)Google Scholar
  90. Ohser, J., Redenbach, C., Schladitz, K.: Mesh free estimation of the structure model index. Image Anal. Stereol. 28(3), 179 (2011)CrossRefGoogle Scholar
  91. Okabe, H., Blunt, M.J.: Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics, Water Resour. Res. 43(12) (2007)Google Scholar
  92. Okabe, H., Blunt, M.J.: Pore space reconstruction using multiple-point statistics. J. Pet. Sci. Eng. 46(1–2), 121 (2005)CrossRefGoogle Scholar
  93. Øren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311 (2002)CrossRefGoogle Scholar
  94. Øren, P.E., Bakke, S.: Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J. Pet. Sci. Eng. 39(3–4), 177 (2003)CrossRefGoogle Scholar
  95. Pentland, C.H., El-Maghraby, R., Iglauer, S., Blunt, M.J.: Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone, Geophys. Res. Lett. 38(6) (2011)CrossRefGoogle Scholar
  96. Picchi, D., Battiato, I.: The Impact of Pore-Scale Flow Regimes on Upscaling of Immiscible Two-Phase Flow in Porous Media. Water Resour. Res. 54(9), 6683–6707 (2018)CrossRefGoogle Scholar
  97. Porter, M.L., Wildenschild, D., Grant, G., Gerhard, J.I.: Measurement and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL-water-glass bead system. Water Resour. Res. 46(8) (2010)Google Scholar
  98. Ramandi, H.L., Mostaghimi, P., Armstrong, R.T., Saadatfar, M., Pinczewski, W.V.: Porosity and permeability characterization of coal: a micro-computed tomography study. Int. J. Coal Geol. 154, 57 (2016)CrossRefGoogle Scholar
  99. Robins, V.: Towards computing homology from finite approximations. Topol. Proc. 24, 503 (1999)Google Scholar
  100. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646 (2011)CrossRefGoogle Scholar
  101. Robins, V., Saadatfar, M., Delgado-Friedrichs, O., Sheppard, A.P.: Percolating length scales from topological persistence analysis of micro-CT images of porous materials. Water Resour. Res. 52(1), 315 (2016).  https://doi.org/10.1002/2015WR017937 CrossRefGoogle Scholar
  102. Rücker, M., Berg, S., Armstrong, R., Georgiadis, A., Ott, H., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., et al.: From connected pathway flow to ganglion dynamics. Geophys. Res. Lett. 42(10), 3888 (2015)CrossRefGoogle Scholar
  103. Saadatfar, M., Takeuchi, H., Robins, V., Francois, N., Hiraoka, Y.: Pore configuration landscape of granular crystallization. Nat. Commun. 8, 15082 (2017)CrossRefGoogle Scholar
  104. Saadatfar, M., Takeuchi, H., Robins, V., Francois, N., Hiraoka, Y.: Pore configuration landscape of granular crystallization, Nature. Nat. Commun. 8, 15082 (2017).  https://doi.org/10.1038/ncomms15082 CrossRefGoogle Scholar
  105. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. John Wiley & Sons, Hoboken (2011)CrossRefGoogle Scholar
  106. San Jose Martinez, F., Muñoz, F., Caniego, F., Peregrina, F.: Morphological functions to quantify three-dimensional tomograms of macropore structure in a vineyard soil with two different management regimes. Vadose Zone J. 12(3) (2013)Google Scholar
  107. Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  108. Schaap, M.G., Porter, M.L., Christensen, B.S., Wildenschild, D.: Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations. Water Resour. Res. 43(12) (2007)Google Scholar
  109. Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbach, B., Herminghaus, S.: Morphological clues to wet granular pile stability. Nat. Mater. 7(3), 189 (2008)CrossRefGoogle Scholar
  110. Schlüter, S., Vogel, H.J.: On the reconstruction of structural and functional properties in random heterogeneous media. Adv. Water Resour. 34(2), 314 (2011)CrossRefGoogle Scholar
  111. Schlüter, S., Weller, U., Vogel, H.J.: Soil-structure development including seasonal dynamics in a long-term fertilization experiment. J. Plant Nutr. Soil Sci. 174(3), 395 (2011)CrossRefGoogle Scholar
  112. Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D.: Image processing of multiphase images obtained via X-ray microtomography: a review. Water Resour. Res. 50(4), 3615 (2014)CrossRefGoogle Scholar
  113. Schlüter, S., Berg, S., Rücker, M., Armstrong, R., Vogel, H.J., Hilfer, R., Wildenschild, D.: Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media. Water Resour. Res. 52(3), 2194 (2016)CrossRefGoogle Scholar
  114. Schlüter, S., Henjes, S., Zawallich, J., Bergaust, L., Horn, M., Ippisch, O., Vogel, H.J., Dörsch, P.: Denitrification in soil aggregate analogues-effect of aggregate size and oxygen diffusion. Front. Environ. Sci. 6, 17 (2018)CrossRefGoogle Scholar
  115. Schmalzing, J., Kerscher, M., Buchert, T.: arXiv preprint astro-ph/9508154 (1995)Google Scholar
  116. Schmalzing, J., Górski, K.M.: Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps. Mon. Not. R. Astron. Soc. 297(2), 355 (1998)CrossRefGoogle Scholar
  117. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory, 151st edn. Cambridge University Press, Cambridge (2014)Google Scholar
  118. Scholz, C., Wirner, F., Götz, J., Rüde, U., Schröder-Turk, G.E., Mecke, K., Bechinger, C.: Permeability of porous materials determined from the Euler characteristic. Phys. Rev. Lett. 109(26), 264504 (2012)CrossRefGoogle Scholar
  119. Scholz, C., Wirner, F., Klatt, M.A., Hirneise, D., Schröder-Turk, G.E., Mecke, K., Bechinger, C.: Direct relations between morphology and transport in Boolean models. Phys. Rev. E 92(4), 043023 (2015)CrossRefGoogle Scholar
  120. Serra, J.: Image analysis and mathematical morphology, pp. 424–478. (1982)Google Scholar
  121. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc, Cambridge (1983)Google Scholar
  122. Tanino, Y., Blunt, M.J.: Capillary trapping in sandstones and carbonates: dependence on pore structure. Water Resour. Res. 48(8) (2012)Google Scholar
  123. Tate, M.L.K., Steck, R., Anderson, E.J.: Bone as an inspiration for a novel class of mechanoactive materials. Biomaterials 30(2), 133 (2009)CrossRefGoogle Scholar
  124. Tiab, D., Donaldson, E.C.: Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. Gulf Professional Publishing, Houston (2015)Google Scholar
  125. Ushizima, D., Morozov, D., Weber, G.H., Bianchi, A.G.C., Sethian, J.A., Bethel, E.W.: Augmented topological descriptors of pore networks for material science. IEEE Trans. Vis. Comput. Gr. 18(12), 2041 (2012).  https://doi.org/10.1109/TVCG.2012.200 CrossRefGoogle Scholar
  126. Valavanides, M., Payatakes, A.: True-to-mechanism model of steady-state two-phase flow in porous media, using decomposition into prototype flows. Adv. Water Resour. 24(3–4), 385 (2001)CrossRefGoogle Scholar
  127. Vogel, H.: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models. Eur. J. Soil Sci. 51(1), 99 (2000)CrossRefGoogle Scholar
  128. Vogel, H.J., Weller, U., Schlüter, S.: Quantification of soil structure based on Minkowski functions. Comput. Geosci. 36(10), 1236 (2010)CrossRefGoogle Scholar
  129. Wang, Y., Rahman, S.S., Arns, C.H.: Super resolution reconstruction of \(\mu \)-CT image of rock sample using neighbour embedding algorithm. Phys. A Stat. Mech. Appl. 493, 177 (2018)CrossRefGoogle Scholar
  130. Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461 (1939)CrossRefGoogle Scholar
  131. Whitaker, S.: The Method of Volume Averaging, vol. 13. Springer Science & Business Media, Berlin (2013)Google Scholar
  132. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217 (2013)CrossRefGoogle Scholar
  133. Wildenschild, D., Vaz, C., Rivers, M., Rikard, D., Christensen, B.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267(3–4), 285 (2002)CrossRefGoogle Scholar
  134. Zhang, Y., Mostaghimi, P., Fogden, A., Sheppard, A., Arena, A., Middleton, J., Armstrong, R.T.: Time-lapsed visualization and characterization of shale diffusion properties using 4D X-ray microcomputed tomography. Energy Fuels 32(3), 2889 (2018)CrossRefGoogle Scholar
  135. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Minerals and Energy Resoureces EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Advanced Research ComputingVirginia TechBlacksburgUSA
  3. 3.Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia
  4. 4.Helmholtz-Centre for Environmental ResearchHalleGermany
  5. 5.Shell Global Solutions International B.V.RijswijkThe Netherlands
  6. 6.Department of Earth Science and Engineering, Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations