Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tracking a Foam Front in a 3D, Heterogeneous Porous Medium


Foam is to be used as a blocking agent for confining a pollutant source zone and avoid spreading in an aquifer. To this end, it is necessary to determine where injected foam flows and stays inside a porous medium. This study examines the use of electrical resistivity tomography for this purpose. Foam is injected in a large-scale 3D heterogeneous porous medium (0.84 × 0.84 × 0.84 m). During the injection, electrical resistivity tomography measurements are performed. We show that combining a large number of measurements with inversion techniques allows for the monitoring of a foam front in 3D during the injection process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146, 54–62 (1942)

  2. Batôt, G., Fleury, M., Rosenberg, E., Nabzar, L., Chabert, M.: Foam propagation in rock samples: impact of oil and flow characterization. In: SPE EOR Conference at Oil and Gas West Asia (SPE-179855-MS) (2016)

  3. Bertin, H.J., Apaydin, O.G., Castanier, L.M., Kovscek, A.R.: Foam flow in heterogeneous porous media: effect of cross flow. SPE J. 4, 75–82 (1999)

  4. Bertin, H., Del Campo Estrada, E., Atteia, O.: Foam placement for soil remediation. Environ. Chem. 14(5), 338–343 (2017)

  5. Binley, A.: R3t version 1.8. University of Lancaster. (2009)

  6. Carrigan, C.R., Yang, X., LaBrecque, D.J., Larsen, D., Freeman, D., Ramirez, A.L., Daily, W., Aines, R., Newmark, R., Friedmann, J., Hovorka, S.: Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs. Int. J. Greenhouse Gas Control 18, 401–408 (2013)

  7. Cassiani, G., Boaga, J., Vanella, D., Perri, M.T., Consoli, S.: Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrol. Earth Syst. Sci. 19(5), 2213–2225 (2015)

  8. Cassiani, G., Boaga, J., Rossi, M., Putti, M., Fadda, G., Majone, B., Bellin, A.: Soil-plant interaction monitoring: small scale example of an apple orchard in Trentino, North-Eastern Italy. Sci. Total Environ. 543(Part B), 851–861 (2016)

  9. Chabert, M., Nabzar, L., Beunat, V., Lacombe, E., Cuenca, A.: Impact of surfactant structure and oil saturation on the behavior of dense CO2 foams in porous media. In: SPE Improved Oil Recovery Symposium (SPE-169116-MS) (2014)

  10. Chambers, J.E., Loke, M.H., Ogilvy, R.D., Meldrum, P.I.: Noninvasive monitoring of DNAPL migration through a saturated porous medium using electrical impedance tomography. J. Contam. Hydrol. 68(1–2), 1–22 (2004)

  11. Du, D., Zitha, P.L.J., Uijttenhout, M.G.H.: Carbon dioxide foam rheology in porous media: a CT scan study. SPE J. 12, 245–252 (2007)

  12. Geuzaine, C., Remacle, J.F.: GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

  13. Hirasaki, G.J., Miller, C.A., Szafranski, R., Lawson, J.B., Meinardus, M.J., Londergan, J.T., Jackson, R.E., Pope, G.A., Wade, W.H.: Field demonstration of the surfactant/foam process for aquifer remediation. In: SPE Annual Technical Conference and Exhibition (SPE 39292) (1997)

  14. Huang, C.-W., Chang, C.-H.: A laboratory study on foam-enhanced surfactant solution flooding in removing n-pentadecane from contaminated columns. Colloids Surf. A 173(1), 171–179 (2000)

  15. Karaoulis, M., Tsourlos, P., Kim, J.H., Revil, A.: 4D time-lapse ERT inversion: introducing combined time and space constraints. Near Surf. Geophys. 12(1), 25–35 (2014)

  16. Karapantsios, T.D., Kostoglou, M.: Electrical resistance tomography for monitoring emulsions and foams. In: iCEF 11: International Congress on Engineering and Food, 22–26 May (2011)

  17. Kim, J.-H., Yi, M.-J., Park, S.-G., Kim, J.G.: 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. J. Appl. Geophys. 68(4), 522–532 (2009)

  18. Kovscek, A.R., Tadeusz, W.P., Radke, C.J.: Mechanistic foam flow simulation in heterogeneous and multidimensional porous media. SPE J. 2(04), 511–526 (1997)

  19. Kuras, O., Pritchard, J.D., Meldrum, P.I., Chambers, J.E., Wilkinson, P.B., Ogilvy, R.D., Wealthall, G.P.: Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). C.R. Geosci. 341(10–11), 868–885 (2009)

  20. Longpré-Girard, M., Martel, R., Robert, T., Lefebvre, R., Lauzon, J.-M.: 2D sandbox experiments of surfactant foams for mobility control and enhanced LNAPL recovery in layered soils. J. Contam. Hydrol. 193, 63–73 (2016)

  21. Lucius, J.E., Olhoeft, G.R., Hill, P.L., Duke, S.K.: Properties and hazards of 108 selected substances. US Geol. Surv. Open File Rep. 92, 527–554 (1992)

  22. Ma, K., Ren, G., Mateen, K., Morel, D., Cordelier, P.: Modeling techniques for foam flow in porous media. SPE J. 20, 453–470 (2014)

  23. Maire, J., Fatin-Rouge, N.: Surfactant foam flushing for in situ removal of DNAPLs in shallow soils. J. Hazard. Mater. 321, 247–255 (2017)

  24. Maire, J., Joubert, A., Kaifas, D., Invernizzi, T., Marduel, J., Colombano, S., Cazaux, D., Marion, C., Klein, P.-Y., Dumestre, A., Fatin-Rouge, N.: Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer. Sci. Total Environ. 612, 1149–1158 (2018)

  25. Masoudi, R., Ann Giddins, M., Karkooti, H., Jalan, S., Valero Gil, A. A.: Foam simulation from coreflood to field scale. In: SPE Asia Pacific Enhanced Oil Recovery Conference (SPE-174628-MS) (2015)

  26. Mulligan, C.N., Eftekhari, F.: Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol. 70(3), 269–279 (2003)

  27. Naudet, V., Gourry, J.-C., Mathieu, F., Girard, J.-F., Blondel, A., Saada, A.: 3D electrical resistivity tomography to locate DNAPL contamination in an urban environment. In: EAGE Near Surface 2011, 17th European Meeting of Environmental and Engineering Geophysics (2011)

  28. Nguyen, Q.P., Currie, P.K., Buijse, M., Zitha, P.L.J.: Mapping of foam mobility in porous media. J. Petrol. Sci. Eng. 58(1), 119–132 (2007)

  29. Pezard, P.A., Denchik, N., Lofi, J., Perroud, H., Henry, G., Neyens, D., Luquot, L., Levannier, A.: Time-lapse downhole electrical resistivity monitoring of subsurface CO2 storage at the Maguelone shallow experimental site (Languedoc, France). Int. J. Greenhouse Gas Control 48, 142–154 (2015)

  30. Portois, C., Boeije, C.S., Bertin, H.J., Atteia, O.: Foam for environmental remediation: generation and blocking effect. Transp. Porous Media 124(3), 787–801 (2018).

  31. Portois, C., Essouayed, E., Annable, M.D., Guiserix, N., Joubert, A., Atteia, O.: Field demonstration of foam injection to confine a chlorinated solvent source zone. J. Contam. Hydrol. 214, 16–23 (2018)

  32. Power, C., Gerhard, J.I., Karaoulis, M., Tsourlos, P., Giannopoulos, A.: Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation. J. Contam. Hydrol. 162–163, 27–46 (2014)

  33. Power, C., Gerhard, J.I., Tsourlos, P., Soupios, P., Simyrdanis, K., Karaoulis, M.: Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays. J. Appl. Geophys. 112, 1–13 (2015)

  34. Revil, A., Schmutz, M., Batzle, M.L.: Influence of oil wettability upon spectral induced polarization of oil-bearing sands. Geophysics 76(5), A31–A36 (2011)

  35. Rothmel, R.K., Peters, R.W., St. Martin, E., DeFlaun, M.F.: Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environ. Sci. Technol. 32(11), 1667–1675 (1998)

  36. Sauer, U., Watanabe, N., Singh, A., Dietrich, P., Kolditz, O., Schütze, C.: Joint interpretation of geoelectrical and soil-gas measurements for monitoring CO2 releases at a natural analogue. Near Surf. Geophys. 12, 165–178 (2014)

  37. Shan, D., Rossen, W.R.: Optimal injection strategies for foam IOR. SPE J. 9(2), 132–150 (2004)

  38. Shi, L., Chen, J., Wang, Q., Song, X.: Effects of carrier on the transport and DDT removal performance of nano-zerovalent iron in packed sands. Chemosphere 209, 489–495 (2018)

  39. Simjoo, M., Dong, Y., Andrianov, A., Talanana, M., Zitha, P.L.J.: CT scan study of immiscible foam flow in porous media for enhancing oil recovery. Ind. Eng. Chem. Res. 52(18), 6221–6233 (2013)

  40. Singh, R., Mohanty, K.K.: Foams stabilized by in situ surface-activated nanoparticles in bulk and porous media. SPE J. 21, 121–130 (2016)

  41. Slater, L.D., Ntarlagiannis, D., Day-Lewis, F.D., Mwakanyamale, K., Versteeg, R.J., Ward, A., Strickland, C., Johnson, C.D., Lane, J.W.: Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington. Water Resour. Res. (2010).

  42. Tsai, Y.-J., Chou, F.-C., Cheng, S.-J.: Using tracer technique to study the flow behavior of surfactant foam. J. Hazard. Mater. 166(2), 1232–1237 (2009)

  43. Van Dam, R.L., Eustice, B.P., Hyndman, D.W., Wood, W.W., Simmons, C.T.: Electrical imaging and fluid modeling of convective fingering in a shallow water-table aquifer. Water Resour. Res. 50(2), 954–968 (2014)

  44. Wagner, F.M., Möller, M., Schmidt-Hattenberger, C., Kempka, T., Maurer, H.: Monitoring freshwater salinization in analog transport models by time-lapse electrical resistivity tomography. J. Appl. Geophys. 89, 84–95 (2013)

  45. Wang, H., Chen, J.: Experimental investigation on influence of foam mobility on polychlorinated biphenyl removal in foam flushing. Environ. Technol. 35(8), 993–1002 (2014)

  46. Wang, M., Cilliers, J.J.: Detecting non-uniform foam density using electrical resistance tomography. Chem. Eng. Sci. 54(5), 707–712 (1999)

  47. Wilkinson, P.B., Meldrum, P.I., Kuras, O., Chambers, J.E., Holyoake, S.J., Ogilvy, R.D.: High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer. J. Appl. Geophys. 70(4), 268–276 (2010)

  48. Yang, X., Lassen, R.N., Jensen, K.H., Looms, M.C.: Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography. Int. J. Greenhouse Gas Control 42, 534–544 (2015)

Download references

Author information

Correspondence to C. S. Boeije.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boeije, C.S., Portois, C., Schmutz, M. et al. Tracking a Foam Front in a 3D, Heterogeneous Porous Medium. Transp Porous Med 131, 23–42 (2020).

Download citation


  • Foam
  • Porous media
  • Environmental remediation
  • Electrical resistivity tomography