Advertisement

Transport in Porous Media

, Volume 126, Issue 2, pp 501–519 | Cite as

Transport of Polymer Particles in Oil–Water Flow in Porous Media: Enhancing Oil Recovery

  • M. A. Endo Kokubun
  • F. A. Radu
  • E. Keilegavlen
  • K. Kumar
  • K. Spildo
Article
  • 49 Downloads

Abstract

We study a heuristic, core-scale model for the transport of polymer particles in a two-phase (oil and water) porous medium. We are motivated by recent experimental observations which report increased oil recovery when polymers are injected after the initial waterflood. We propose the recovery mechanism to be microscopic diversion of the flow, where injected particles can accumulate in narrow pore throats and clog it, in a process known as a log-jamming effect. The blockage of the narrow pore channels leads to a microscopic diversion of the water flow, causing a redistribution of the local pressure, which again can lead to the mobilization of trapped oil, enhancing its recovery. Our objective herein is to develop a core-scale model that is consistent with the observed production profiles. We show that previously obtained experimental results can be qualitatively explained by a simple two-phase flow model with an additional transport equation for the polymer particles. A key aspect of the formulation is that the microscopic heterogeneity of the rock and a dynamic altering of the permeability must be taken into account in the rate equations.

Keywords

Enhanced oil recovery Trapped oil mobilization Polymer particles Log-jamming 

List of symbols

\(A_1, A_2\)

Constants for residual oil saturation change

\(c_l\)

Mass concentration of polymer particles (\(\hbox {kg}/\hbox {m}^3\))

\({\varvec{D}}_l\)

Diffusion matrix of polymer particles in water (\(\hbox {m}^2/\hbox {s}\))

\(d_\mathrm{p}\)

Polymer particle diameter (m)

\(\mathbf {g}\)

Gravity vector (\(\hbox {m}/\hbox {s}^2\))

\(\mathbf{K}\)

Absolute permeability tensor (\(\hbox {m}^2\))

\(K_\mathrm{B}\)

Boltzmann constant (\(\hbox {m}^2\,\hbox {kg}/\hbox {s}^2\,\hbox {K}\))

\(k_l\)

Constant rate of clogging (\(\hbox {m}^{-1}\))

\(k_r\)

Constant rate of unclogging (\(\hbox {s}^{-1}\))

\(k_{r\alpha }\)

Relative permeability of phase \(\alpha \)

\(n_o,n_w\)

Exponents for the relative permeabilities

\(p_\alpha \)

Pressure of phase \(\alpha \) (Pa)

R

Reaction rate \((\hbox {kg}/\hbox {m}^3\,\hbox {s}\))

\(s_\alpha \)

Saturation of phase \(\alpha \)

T

Temperature (K)

\(\mathbf {u}_\alpha \)

Velocity of phase \(\alpha \, (\hbox {m}/\hbox {s})\)

Greek letters

\(\gamma \)

Constant for permeability change

\(\delta \)

Heterogeneity factor

\(\lambda _\alpha \)

Mobility of phase \(\alpha \, (\hbox {m s}/\hbox {kg})\)

\(\mu _\alpha \)

Viscosity of phase \(\alpha \, (\hbox {kg}/\hbox {m s})\)

\(\rho _\alpha \)

Mass density of phase \(\alpha \, (\hbox {kg}/\hbox {m}^3)\)

\(\sigma \)

Volumetric concentration of accumulated particles

\(\tau \)

Tortuosity

\(\phi \)

Porosity

\(\varphi \)

Clogging rate (\(\hbox {kg}/\hbox {m}^3\,\hbox {s}\))

\(\psi \)

Unclogging rate (\(\hbox {kg}/\hbox {m}^3\,\hbox {s}\))

Supplementary material

References

  1. Abdulbaki, M., Huh, C., Sepehrnoori, K., Delshad, M., Varavei, A.: A critical review on use of polymer microgels for conformance control purposes. J. Pet. Sci. Eng. 122, 741–753 (2014)CrossRefGoogle Scholar
  2. Adler, P., Jacquin, C., Quiblier, J.: Flow in simulated porous media. Int. J. Multiph. Flow 16, 691–712 (1990)CrossRefGoogle Scholar
  3. Bao, K., Lie, K.A., Myner, O., Liu, M.: Fully implicit simulation of polymer flooding with MRST. Comput. Geosci. 21, 1219–1244 (2017)CrossRefGoogle Scholar
  4. Bennacer, L., Ahfir, N.D., Alem, A., Wang, H.: Coupled effects of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles in saturated porous media. Transp. Porous Media 118, 251–269 (2017)CrossRefGoogle Scholar
  5. Bjørsvik, M., Høiland, H., Skauge, A.: Formation of colloidal dispersion gels from aqueous polyacrylamide solutions. Colloids Surf. A 317, 504–511 (2008)CrossRefGoogle Scholar
  6. Bolandtaba, S., Skauge, A.: Network modeling of EOR processes: a combined invasion percolation and dynamic model for mobilization of trapped oil. Transp. Porous Media 89, 357–382 (2011)CrossRefGoogle Scholar
  7. Bolandtaba, S., Skauge, A., Mackay, E.: Pore scale modelling of linked polymer solution (LPS): a new EOR process. In: Paper Presented at the 15th European Symposium on Improved Recovery.  https://doi.org/10.3997/2214-4609.201404822 (2009)
  8. Borazjani, S., Behr, A., Genolet, L., Van Der Net, A., Bedrikovetsky, P.: Effects of fines migration on low-salinity waterflooding: analytical modelling. Transp. Porous Media 116, 213–249 (2017)CrossRefGoogle Scholar
  9. Bringedal, C., Kumar, K.: Effective behavior near clogging in upscaled equations for non-isothermal reactive porous media flow. Transp. Porous Media 120, 553–577 (2017)CrossRefGoogle Scholar
  10. Bringedal, C., Berre, I., Pop, I., Radu, F.: Upscaling of non-isothermal reactive porous media flow with changing porosity. Transp. Porous Media 114, 371–393 (2016)CrossRefGoogle Scholar
  11. Brooks, R., Corey, A.: Hydraulic Properties of Porous Media. Colorado State University, Fort Collins (1964)Google Scholar
  12. Chang, H., Xui, X., Xiao, L., Guo, Z., Yao, Y., Xiao, Y., Chen, G., Song, K., Mack, J.: Successful field pilot of in-depth colloidal dispersion gel (CDG) technology in Daqing Oilfield. SPE Reserv. Eval. Eng. 9, 89460 (2006)Google Scholar
  13. Civan, F.: Modified formulations of particle deposition and removal kinetics in saturated porous media. Transp. Porous Media 111, 381–410 (2016)CrossRefGoogle Scholar
  14. de Anna, P., Quaife, B., Biros, G., Juanes, R.: Prediction of the low-velocity distribution from the pore structure in simple porous media. Phys. Rev. Fluids 2, 124103 (2017)CrossRefGoogle Scholar
  15. El-Amin, M., Sun, S., Salama, A.: Enhanced oil recovery by nanoparticles injection: modeling and simulation. In: Paper SPE 164333 presented at the SPE Middle East Oil and Gas Show and Conference, 10-13 March, Manama, Bahrain (2013)Google Scholar
  16. Gruesbeck, C., Collins, R.: Entrainment and deposition of fine particles in porous media. Soc. Pet. Eng. J. 22, 847–856 (1982)CrossRefGoogle Scholar
  17. Hussain, F., Zeinijahromi, A., Bedrikovetsky, P., Badalyan, A., Carageorgos, T., Cinar, Y.: An experimental study of improved oil recovery through fines-assisted waterflooding. J. Pet. Sci. Eng. 109, 187–197 (2013)CrossRefGoogle Scholar
  18. Jacquin, C.: Corrélation entre la perméabilité et les caratéristiques géométriques du grés de fontainebleau. Rev. Inst. Fr. Pét. 19, 921–937 (1964)Google Scholar
  19. Lake, L., Schmidt, R., Venuto, P.: A niche for enhanced oil recovery in the 1990s. Oilfield Rev. 4, 55–61 (1992)Google Scholar
  20. Landa-Marbán, D., Radu, F., Nordbotten, J.: Modeling and simulation of microbial enhanced oil recovery including interfacial area. Transp. Porous Media 120, 395–413 (2017)CrossRefGoogle Scholar
  21. Li, Y., Abriola, L., Phelan, T., Ramsburg, C., Pennell, K.: Experimental and numerical validation of the total trapping number for prediction of DNAPL mobilization. Environ. Sci. Technol. 41, 8135–8141 (2007)CrossRefGoogle Scholar
  22. Lie, K.A.: And Introduction to Reservoir Simulation Using MATLAB: User Guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTEF ICT, Oslo (2016)Google Scholar
  23. List, F., Radu, F.: A study on iterative methods for solving richard’s equation. Comput. Geosci. 20, 341–353 (2016)CrossRefGoogle Scholar
  24. Mack, J., Smith, J.: In-Depth Colloidal Dispersion Gels Improve Oil Recovery Efficiency, p. 27780. SPE, Tulsa (1994)Google Scholar
  25. Muntean, A., Nikolopoulos, C.: Colloidal Transport in Locally Periodic Evolving Porous Media: An Upscaling Exercise (2017). arXiv:1712.05598
  26. Musuuza, J., Attinger, S., Radu, F.: An extended stability criterion for density-driven flows in homogeneous porous media. Adv. Water Resour. 23, 796–808 (2009)CrossRefGoogle Scholar
  27. Musuuza, J., Radu, F., Attinger, S.: The stability of density-driven flows in saturated heterogeneous porous media. Adv. Water Resour. 34, 1464–1482 (2011)CrossRefGoogle Scholar
  28. Nasralla, R., Nasr-El-Din, H.: Double-layer expansion: is it a primary mechanism of improved oil recovery by low-salinity waterflooding? SPE Reserv. Eval. Eng. 17, 49–59 (2014)Google Scholar
  29. Pope, G.: The application of fractional flow theory to enhanced oil recovery. SPE J. 20, 191 (1980)Google Scholar
  30. Radu, F., Nordbotten, J., Pop, I., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015)CrossRefGoogle Scholar
  31. Ray, N., van Noorden, T., Frank, F., Knabner, P.: Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. Transp. Porous Media 95, 669–696 (2012)CrossRefGoogle Scholar
  32. Sheng, J.: Modern Chemical Enhanced Oil Recovery: Theory and Practice. Elsevier, London (2011)Google Scholar
  33. Shi, J., Varavei, A., Huh, C., Delshad, M., Sepehrnoori, K., Li, X.: Viscosity model of preformed microgels for conformance and mobility control. Energy Fuels 25, 5033–5037 (2011)CrossRefGoogle Scholar
  34. Skauge, T., Spildo, K., Skauge, A.: Nano-sized particles for EOR. In: Paper 129933 presented at the SPE Improved Oil Recovery Symposium, 24-28 April, Tulsa, Oklahoma, USA (2010)Google Scholar
  35. Spildo, K., Skauge, A., Aarra, M.G., Tweheyo, M.T.: A new polymer application for North Sea reservoirs. SPE Reserv. Eval. Eng. 12, 427–432 (2009)Google Scholar
  36. Spildo, K., Skauge, A., Skauge, T.: Propagation of colloidal dispersion gels (CDG) in laboratory corefloods. In: Paper SPE 129927 presentend at the SPE Improved Oil Recovery Symposium, 24-28 April, Tulsa, Oklahoma, USA (2010)Google Scholar
  37. Stephens, M.: EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69, 730–737 (1974)CrossRefGoogle Scholar
  38. van Duijn, C., Cao, X., Pop, I.: Two-phase flow in porous media: dynamic capillarity and heterogeneous media. Transp. Porous Media 114, 283–308 (2016)CrossRefGoogle Scholar
  39. You, Q., Dai, C., Tang, Y., Guan, P., Zhao, G., Zhao, F.: Study on performance evaluation of dispersed particle gel for improved oil recovery. J. Energy Resour. Technol. 135, 11849 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • M. A. Endo Kokubun
    • 1
  • F. A. Radu
    • 2
  • E. Keilegavlen
    • 2
  • K. Kumar
    • 2
  • K. Spildo
    • 1
  1. 1.Department of ChemistryUniversity of BergenBergenNorway
  2. 2.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations