Advertisement

High-Resolution Temporo-Ensemble PIV to Resolve Pore-Scale Flow in 3D-Printed Fractured Porous Media

  • Mehrdad Ahkami
  • Thomas Roesgen
  • Martin O. Saar
  • Xiang-Zhao Kong
Article
  • 141 Downloads

Abstract

Fractures are conduits that can enable fast advective transfer of (fluid, solute, reactant, particle, etc.) mass and energy. Such fast transfer can significantly affect pore-scale physico-chemical processes, which can in turn affect macroscopic mass and energy transport characteristics. Here, flooding experiments are conducted in a well-characterized fractured porous medium, manufactured by 3D printing. Given steady-state flow conditions, the micro-structure of the two-dimensional pore fluid flow field is delineated to resolve fluid velocities on the order of a sub-millimeter per second. We demonstrate the capabilities of a new temporo-ensemble particle image velocimetry method by maximizing its spatial resolution, employing in-line illumination. This method is advantageous as it is capable of minimizing the number of pixels, required for velocity determinations, down to one pixel, thereby enabling resolving high spatial resolutions of velocity vectors in a large field of view. While the main goal of this study is to introduce a novel experimental and velocimetry framework, this new method is then applied to specifically improve the understanding of fluid flow through fractured porous media. Histograms of measured velocities indicate log-normal and Gaussian-type distributions of longitudinal and lateral velocities in fractures, respectively. The magnitudes of fluid velocities in fractures and the flow interactions between fractures and matrices are shown to be influenced by the permeability of the background matrix and the orientation of the fractures.

Keywords

Particle image velocimetry (PIV) Fractured porous media Pore-scale Flow characterization 3D printing 

Notes

Acknowledgements

This work was supported by ETH Grant ETH-12 15-2 and by SNF Grant 177031. The Werner Siemens Foundation (Werner Siemens-Stiftung) is further thanked by Martin Saar for its support of the Geothermal Energy and Geofluids Group at ETH Zurich. We thank our technician, Nils Knornschild, for his invaluable contributions to the described experiments. The datasets generated and/or analyzed during the current study are available from the ETH library under DOI: 10.3929/ethz-b-000281502.

References

  1. 3D-LABS-GmbH. www.3d-labs.de. Accessed 10 Feb 2018
  2. Abushaikha, A.S., Gosselin, O.R.: Matrix-fracture transfer function in dual-medium flow simulation: review, comparison, and validation. In: SPE Europe/ EAGE Annual Conference and Exhibition, pp. 1–25 (2008)Google Scholar
  3. Adrian, R.J., Westerweel, J.: Particle Image Velocimetry, vol. 30. Cambridge University Press, Cambridge (2011)Google Scholar
  4. Agelinchaab, M., Tachie, M.F., Ruth, D.W.: Velocity measurement of flow through a model three-dimensional porous medium. Phys. Fluids 18(1), 017105 (2006)CrossRefGoogle Scholar
  5. Allan, F.M., Hamdan, M.H.: Fluid mechanics of the interface region between two porous layers. Appl. Math. Comput. 128(1), 37–43 (2002)Google Scholar
  6. Arthur, J.K., Ruth, D.W., Tachie, M.F.: PIV measurements of flow through a model porous medium with varying boundary conditions. J. Fluid Mech. 629, 343 (2009)CrossRefGoogle Scholar
  7. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)CrossRefGoogle Scholar
  8. Barenblatt, G.I., Zheltov, Y.P.: Fundamental equations for the flow of homogeneous fluids through fissured rocks. Dokl. Akad. Nauk. SSSK 132, 545–548 (1960)Google Scholar
  9. Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. 110(10), 3755–3759 (2013)CrossRefGoogle Scholar
  10. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002)CrossRefGoogle Scholar
  11. Boek, E.S., Venturoli, M.: Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 59(7), 2305–2314 (2010)CrossRefGoogle Scholar
  12. Bröder, D., Sommerfeld, M.: Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas. Sci. Technol. 18(8), 2513–2528 (2007)CrossRefGoogle Scholar
  13. Buchgraber, M., Al-Dossary, M., Ross, C., Kovscek, A.R.: Creation of a dual-porosity micromodel for pore-level visualization of multiphase flow. J. Pet. Sci. Eng. 86, 27–38 (2012)CrossRefGoogle Scholar
  14. Davis, M., Walsh, S., Saar, M.O.: Statistically reconstructing continuous isotropic and anisotropic two-phase media while preserving macroscopic material properties. Phys. Rev. E 83(2), 026706 (2011)CrossRefGoogle Scholar
  15. Delnoij, E., Westerweel, J., Deen, N.G., Kuipers, J.A., Van Swaaij, W.P.: Ensemble correlation PIV applied to bubble plumes rising in a bubble column. Chem. Eng. Sci. 54(21), 5159–5171 (1999)CrossRefGoogle Scholar
  16. Dijk, P., Berkowitz, B., Bendel, P.: Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI). Water Resour. Res. 35(2), 347–360 (1999)CrossRefGoogle Scholar
  17. Dijk, P.E., Berkowitz, B.: Three-dimensional flow measurements in rock fractures. Water Resour. Res. 35(12), 3955–3959 (1999)CrossRefGoogle Scholar
  18. Estevadeordal, J., Goss, L.: PIV with LED: particle shadow velocimetry (PSV). In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Meeting Papers, pp. 12355–12364 (2005)Google Scholar
  19. Fouras, A., Lo Jacono, D., Hourigan, K.: Target-free stereo PIV: a novel technique with inherent error estimation and improved accuracy. Exp. Fluids 44(2), 317–329 (2008)CrossRefGoogle Scholar
  20. Goss, L., Estevadeordal, J., Crafton, J.: Velocity measurements near walls, cavities, and model surfaces using particle shadow velocimetry (PSV). In: Instrumentation in Aerospace Simulation Facilities. 22nd International Congress on ICIASF 2007, pp. 1–8. IEEE (2007)Google Scholar
  21. Gui, L., Wereley, S., Lee, S.: Digital filters for reducing background noise in micro PIV measurements. In: 11th International Symposium on the Application of Laser Techniques to Fluid Mechanics, Lisbon (2002)Google Scholar
  22. Hassan, Y.A., Dominguez-Ontiveros, E.E.: Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl. Eng. Des. 238(11), 3080–3085 (2008)CrossRefGoogle Scholar
  23. Hatiboglu, C.U., Babadagli, T.: Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 77(6), 1–11 (2008)CrossRefGoogle Scholar
  24. Heshmati, M., Piri, M.: Interfacial boundary conditions and residual trapping: a pore-scale investigation of the effects of wetting phase flow rate and viscosity using micro-particle image velocimetry. Fuel 224, 560–578 (2018)CrossRefGoogle Scholar
  25. Holzner, M., Morales, V.L., Willmann, M., Dentz, M.: Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92(1), 1–6 (2015)CrossRefGoogle Scholar
  26. Huang, A.Y., Huang, M.Y., Capart, H., Chen, R.H.: Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed spheres. Exp. Fluids 45(2), 309–321 (2008)CrossRefGoogle Scholar
  27. Ishutov, S., Jobe, T.D., Zhang, S., Gonzalez, M., Agar, S.M., Hasiuk, F.J., Watson, F., Geiger, S., Mackay, E., Chalaturnyk, R.: Three-dimensional printing for geoscience: fundamental research, education, and applications for the petroleum industry. AAPG Bull. 102(1), 1–26 (2018)CrossRefGoogle Scholar
  28. Johnston, W., Dybbs, A., Edwards, R.: Measurement of fluid velocity inside porous media with a laser anemometer. Phys. Fluids 18(7), 913 (1975)CrossRefGoogle Scholar
  29. Kazemi, H., Merrill Jr., L.S., Porterfield, K.L., Zeman, P.R.: Numerical simulation of water-oil flow in naturally fractured reservoirs. Soc. Pet. Eng. J. 16(06), 317–326 (1976)CrossRefGoogle Scholar
  30. Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191–215 (1992)CrossRefGoogle Scholar
  31. Khalili, A., Basu, A.J., Pietrzyk, U.: Flow visualization in porous media via positron emission tomography. Phys. Fluids 10(4), 1031–1033 (1998)CrossRefGoogle Scholar
  32. Khodaparast, S., Borhani, N., Thome, J.R.: Application of micro particle shadow velocimetry \(\mu \text{ PSV }\) to two-phase flows in microchannels. Int. J. Multiphase Flow 62, 123–133 (2014)CrossRefGoogle Scholar
  33. Kong, X.Z., Holzner, M., Stauffer, F., Kinzelbach, W.: Time-resolved 3D visualization of air injection in a liquid-saturated refractive-index-matched porous medium. Exp. Fluids 50(6), 1659–1670 (2011)CrossRefGoogle Scholar
  34. Krummel, A.T., Datta, S.S., Münster, S., Weitz, D.A.: Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. AIChE J. 59(3), 1022–1029 (2013)CrossRefGoogle Scholar
  35. Lachhab, A., Zhang, Y.K., Muste, M.V.I.: Particle tracking experiments in match-index-refraction porous media. Ground Water 46(6), 865–872 (2008)Google Scholar
  36. Landreth, C.C., Adrian, R.J.: Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence. Exp. Fluids 9(1–2), 74–84 (1990)CrossRefGoogle Scholar
  37. Lebon, L., Oger, L., Leblond, J., Hulin, J.P., Martys, N.S., Schwartz, L.M.: Pulsed gradient NMR measurements and numerical simulation of flow velocity distribution in sphere packings. Phys. Fluids 8(2), 293–301 (1996)CrossRefGoogle Scholar
  38. Li, Y., Kazemifar, F., Blois, G., Christensen, K.T.: Micro-piv measurements of multiphase flow of water and liquid CO\(_2\) in 2-d heterogeneous porous micromodels. Water Resour. Res. 53(7), 6178–6196 (2017)CrossRefGoogle Scholar
  39. Lindken, R., Rossi, M., Große, S., Westerweel, J.: Micro-particle image velocimetry (\(\mu \text{ PIV }\)): recent developments, applications, and guidelines. Lab Chip 9(17), 2551 (2009)CrossRefGoogle Scholar
  40. Lourenco, L., Krothapalli, A.: On the accuracy of velocity and vorticity measurements with PIV. Exp. Fluids 18(6), 421–428 (1995)CrossRefGoogle Scholar
  41. Lu, H., Di Donato, G., Blunt, M.J.: General transfer functions for multiphase flow in fractured reservoirs. SPE J. 13(03), 289–297 (2008)CrossRefGoogle Scholar
  42. Maas, H.G., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in 3-dimensional flows. 1. Photogrammetric determination of partacle coordinates. Exp. Fluids 15(2), 133–146 (1993)CrossRefGoogle Scholar
  43. Maier, R., Kroll, D., Kutsovsky, Y., Davis, H., Bernard, R.: Simulation of flow through bead packs using the lattice Boltzmann method. Phys. Fluids 10(1), 60–74 (1998)CrossRefGoogle Scholar
  44. Méheust, Y., Schmittbuhl, J.: Geometrical heterogeneities and permeability anisotropy of rough fractures. J. Geophys. Res. 106, 2098–2102 (2001)CrossRefGoogle Scholar
  45. Meinhart, C.D., Wereley, S.T., Santiago, J.G.: A PIV algorithm for estimating time-averaged velocity fields. J. Fluids Eng. 122(2), 285 (2000)CrossRefGoogle Scholar
  46. Moroni, M., Cushman, J.H.: Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. II. Experiments. Phys. Fluids 13(1), 81–91 (2001)CrossRefGoogle Scholar
  47. Mourzenko, V.V., Thovert, J.-F., Adler, P.M.: Permeability of a single fracture; validity of the Reynolds equation. J. Phys. 5(3), 465–482 (1995)Google Scholar
  48. Nguyen, C.V., Fouras, A., Carberry, J.: Improvement of measurement accuracy in micro PIV by image overlapping. Exp. Fluids 49(3), 701–712 (2010)CrossRefGoogle Scholar
  49. Ogawa, K., Matsuka, T., Hirai, S., Okazaki, K.: Three-dimensional velocity measurement of complex interstitial flows through water-saturated porous media by the tagging method in the MRI technique. Meas. Sci. Technol. 12(2), 172–180 (2001)CrossRefGoogle Scholar
  50. Oron, A.P., Berkowitz, B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34(11), 2811–2825 (1998)CrossRefGoogle Scholar
  51. Patil, V.A., Liburdy, J.A.: Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed. Exp. Fluids 54(4), 1–19 (2013)CrossRefGoogle Scholar
  52. Perrin, C.L., Sorbie, K.S., Tardy, P.M.J., Crawshaw, J.P.: Micro-PIV: a new technology for pore scale flow characterization in micromodels. In: SPE Europec/EAGE Annual Conference, vol. i, pp. 1–8 (2005)Google Scholar
  53. Roesgen, T.: Optimal subpixel interpolation in particle image velocimetry. Exp. Fluids 35(3), 252–256 (2003)CrossRefGoogle Scholar
  54. Roman, S., Soulaine, C., AlSaud, M.A., Kovscek, A., Tchelepi, H.: Particle velocimetry analysis of immiscible two-phase flow in micromodels. Adv. Water Resour. 95, 199–211 (2016)CrossRefGoogle Scholar
  55. Samarage, C.R., Carberry, J., Hourigan, K., Fouras, A.: Optimisation of temporal averaging processes in PIV. Exp. Fluids 52(3), 617–631 (2012)CrossRefGoogle Scholar
  56. Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids 25(4), 316–319 (1998)CrossRefGoogle Scholar
  57. Santosh, V., Mitra, S.K., Vinjamur, M., Singh, R.: Experimental and numerical investigations of waterflood profiles with different well configurations. Energy Fuels 21(6), 3353–3359 (2007)CrossRefGoogle Scholar
  58. Sen, D., Abdolrazaghi, M., Nobes, D.S., Mitra, S.K.: Investigation of interstitial velocity field inside micro-porous media. In: ASME 2010 International Mechanical Engineering Congress and Exposition, pp. 743–748. American Society of Mechanical Engineers (2010)Google Scholar
  59. Sen, D., Nobes, D.S., Mitra, S.K.: Optical measurement of pore scale velocity field inside microporous media. Microfluidics Nanofluidics 12(1–4), 189–200 (2012)CrossRefGoogle Scholar
  60. Shams, M., Currie, I.G., James, D.F.: The flow field near the edge of a model porous medium. Exp. Fluids 35(2), 193–198 (2003)CrossRefGoogle Scholar
  61. Stewart, M.L., Ward, A.L., Rector, D.R.: A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method. Adv. Water Resour. 29(9), 1328–1340 (2006)CrossRefGoogle Scholar
  62. Tachie, M.F., James, D.F., Currie, I.G.: Velocity measurements of a shear flow penetrating a porous medium. J. Fluid Mech. 493(493), 319–343 (2003)CrossRefGoogle Scholar
  63. Tijsseling, A.S. Vardy, A.E.: Time scales and FSI in unsteady liquid-filled pipe flow. In: Murray, S.J. (ed.) The 9th International Conference on Pressure Surges, Chester, UK. pp. 135–150. BHR Group, Cranfield (2004)Google Scholar
  64. Vafai, K., Thiyagaraja, R.: Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transf. 30(7), 1391–1405 (1987)CrossRefGoogle Scholar
  65. Waheed, S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B., Breadmore, M.C.: 3D printed microfluidic devices: enablers and barriers. Lab Chip 16(11), 1993–2013 (2016)CrossRefGoogle Scholar
  66. Walsh, S.D., Saar, M.O.: Lbhydra. http://lbhydra.umn.edu/LBHydra/Home.html (2010). Accessed 16 May 2018
  67. Wereley, S.T., Gui, L., Meinhart, C.D.C.: Advanced algorithms for microscale particle image velocimetry. AIAA J. 40(6), 1047–1055 (2002)CrossRefGoogle Scholar
  68. Wereley, S.T., Meinhart, C.D.: Recent advances in micro-particle image velocimetry. Annu. Rev. Fluid Mech. 42(1), 557–576 (2010)CrossRefGoogle Scholar
  69. Westerweel, J., Geelhoed, P.F., Lindken, R.: Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37(3), 375–384 (2004)CrossRefGoogle Scholar
  70. Westerweel, J., Scarano, F.: Universal outlier detection for PIV data. Exp. Fluids 39(6), 1096–1100 (2005)CrossRefGoogle Scholar
  71. Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10(4), 181–193 (1991)CrossRefGoogle Scholar
  72. Yun, W., Ross, C.M., Roman, S., Kovscek, A.R.: Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media. Lab Chip 17(8), 1462–1474 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Geothermal Energy and Geofluids, Institute of GeophysicsETH ZurichZurichSwitzerland
  2. 2.Institute of Fluid DynamicsETH ZurichZurichSwitzerland

Personalised recommendations