Advertisement

Transport in Porous Media

, Volume 126, Issue 2, pp 431–453 | Cite as

Microstructure Effects on Effective Gas Diffusion Coefficient of Nanoporous Materials

  • Yangyu Guo
  • Xinting He
  • Wenzheng Huang
  • Moran WangEmail author
Article
  • 98 Downloads

Abstract

In this work, we develop a numerical framework for gas diffusion in nanoporous materials including a random generation-growth algorithm for microstructure reconstruction and a multiple-relaxation-time lattice Boltzmann method for solution of diffusion equation with Knudsen effects carefully considered. The Knudsen diffusion is accurately captured by a local diffusion coefficient computed based on a corrected Bosanquet-type formula with the local pore size determined by the largest sphere method. A robust validation of the new framework is demonstrated by predicting the effective gas diffusion coefficient of microporous layer and catalyst layer in fuel cell, which shows good agreement with several recent experimental measurements. Then, a detailed investigation is made of the influence on effective gas Knudsen diffusivity by many important microstructure factors including morphology category, size effect, structure anisotropy, and layering structure effect. A widely applicable Bosanquet-type empirical relation at the Darcy scale is found between the normalized effective gas diffusion coefficient and the average Knudsen number. The present work will promote the understanding and modeling of gas diffusion in nanoporous materials and also provide an efficient platform for the optimization design of nanoporous systems.

Keywords

Effective diffusion coefficient Knudsen diffusion Nanoporous material Lattice Boltzmann method 

Notes

Acknowledgements

The authors appreciate helpful discussions with Prof. N. Pan. This work is financially supported by the NSF grant of China (No. U1562217) and the National Science and Technology Major Project on Oil and Gas (No. 2017ZX05013001).

References

  1. Andisheh-Tadbir, M., El Hannach, M., Kjeang, E., Bahrami, M.: An analytical relationship for calculating the effective diffusivity of micro-porous layers. Int. J. Hydrogen Energy 40, 10242–10250 (2015)CrossRefGoogle Scholar
  2. Becker, J., Wieser, C., Fell, S., Steiner, K.: A multi-scale approach to material modeling of fuel cell diffusion media. Int J Heat Mass Tran 54, 1360–1368 (2011)CrossRefGoogle Scholar
  3. Berson, A., Choi, H.-W., Pharoah, J.G.: Determination of the effective gas diffusivity of a porous composite medium from the three-dimensional reconstruction of its microstructure. Phys. Rev. E 83, 026310 (2011)CrossRefGoogle Scholar
  4. Beskok, A., Karniadakis, G.E.: Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3, 43–77 (1999)CrossRefGoogle Scholar
  5. Bhattacharya, S., Gubbins, K.E.: Fast method for computing pore size distributions of model materials. Langmuir 22, 7726–7731 (2006)CrossRefGoogle Scholar
  6. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2002)Google Scholar
  7. Blundell, S.J., Blundell, K.M.: Concepts in Thermal Physics. Oxford University Press, Oxford (2009)CrossRefGoogle Scholar
  8. Bruggeman, V.D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935)CrossRefGoogle Scholar
  9. Chai, Z., Huang, C., Shi, B., Guo, Z.: A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media. Int. J. Heat. Mass. Trans. 98, 687–696 (2016)CrossRefGoogle Scholar
  10. Chan, C., Zamel, N., Li, X.G., Shen, J.: Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells. Electrochim. Acta 65, 13–21 (2012)CrossRefGoogle Scholar
  11. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1953)Google Scholar
  12. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)CrossRefGoogle Scholar
  13. Chen, L., Wu, G., Holby, E.F., Zelenay, P., Tao, W.-Q., Kang, Q.: Lattice Boltzmann pore-scale investigation of coupled physical-electrochemical processes in c/pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells. Electrochim. Acta 158, 175–186 (2015)CrossRefGoogle Scholar
  14. Cousins, T.A., Ghanbarian, B., Daigle, H.: Three-dimensional lattice boltzmann simulations of single-phase permeability in random fractal porous media with rough pore-solid interface. Transp. Porous Med. 122, 527–546 (2018)CrossRefGoogle Scholar
  15. Delerue, J., Perrier, E., Yu, Z., Velde, B.: New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils. Phys. Chem. Earth Part A. 24, 639–644 (1999)CrossRefGoogle Scholar
  16. d’Humieres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360, 437–451 (2002)CrossRefGoogle Scholar
  17. Dreyer, J.A.H., Riefler, N., Pesch, G.R., Karamehmedović, M., Fritsching, U., Teoh, W.Y., Mädler, L.: Simulation of gas diffusion in highly porous nanostructures by direct simulation Monte Carlo. Chem. Eng. Sci. 105, 69–76 (2014)CrossRefGoogle Scholar
  18. El Hannach, M., Singh, R., Djilali, N., Kjeang, E.: Micro-porous layer stochastic reconstruction and transport parameter determination. J. Power Sources 282, 58–64 (2015)CrossRefGoogle Scholar
  19. Ellis, M.W., Von Spakovsky, M.R., Nelson, D.J.: Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc. IEEE 89, 1808–1818 (2001)CrossRefGoogle Scholar
  20. Fei, F., Fan, J., Jiang, J.: Solid wall effect on the transport coefficients of gases. Sci. China Phys. Mech. Astron. 55, 927–932 (2012)CrossRefGoogle Scholar
  21. Froning, D., Brinkmann, J., Reimer, U., Schmidt, V., Lehnert, W., Stolten, D.: 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method. Electrochim. Acta 110, 325–334 (2013)CrossRefGoogle Scholar
  22. Froning, D., Yu, J., Gaiselmann, G., Reimer, U., Manke, I., Schmidt, V., Lehnert, W.: Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells. J. Power Sour. 318, 26–34 (2016)CrossRefGoogle Scholar
  23. Galinsky, M., Sénéchal, U., Breitkopf, C.: The impact of microstructure geometry on the mass transport in artificial pores: a numerical approach. Model. Simul. Eng. 2014, 1–7 (2014)CrossRefGoogle Scholar
  24. Haynes, W.M., Lide, D.R., Bruno, T.J.: CRC Handbook of Chemistry and Physics. CRC Press, New York (2012)Google Scholar
  25. He, X., Guo, Y., Li, M., Pan, N., Wang, M.: Effective gas diffusion coefficient in fibrous materials by mesoscopic modeling. Int. J. Heat. Mass. Trans. 107, 736–746 (2017)CrossRefGoogle Scholar
  26. Hussain, M., Tian, E., Cao, T.-F., Tao, W.-Q.: Pore-scale modeling of effective diffusion coefficient of building materials. Int. J. Heat. Mass. Trans. 90, 1266–1274 (2015)CrossRefGoogle Scholar
  27. Inoue, G., Kawase, M.: Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell. J. Power Sources 327, 1–10 (2016a)CrossRefGoogle Scholar
  28. Inoue, G., Kawase, M.: Understanding formation mechanism of heterogeneous porous structure of catalyst layer in polymer electrolyte fuel cell. Int. J. Hydrogen Energy 41, 21352–21365 (2016b)CrossRefGoogle Scholar
  29. Inoue, G., Yokoyama, K., Ooyama, J., Terao, T., Tokunaga, T., Kubo, N., Kawase, M.: Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components. J. Power Sour. 327, 610–621 (2016)CrossRefGoogle Scholar
  30. Ismail, M.S., Ingham, D.B., Hughes, K.J., Ma, L., Pourkashanian, M.: Effective diffusivity of polymer electrolyte fuel cell gas diffusion layers: an overview and numerical study. Int. J. Hydrogen Energy 40, 10994–11010 (2015)CrossRefGoogle Scholar
  31. Joshi, A.S., Peracchio, A.A., Grew, K.N., Chiu, W.K.S.: Lattice Boltzmann method for multi-component, non-continuum mass diffusion. J. Phys. D Appl. Phys. 40, 7593–7600 (2007a)CrossRefGoogle Scholar
  32. Joshi, A.S., Peracchio, A.A., Grew, K.N., Chiu, W.K.: Lattice Boltzmann method for continuum, multi-component mass diffusion in complex 2D geometries. J. Phys. D Appl. Phys. 40, 2961 (2007b)CrossRefGoogle Scholar
  33. Kärger, J., Ruthven, D.M., Theodorou, D.N.: Diffusion in Nanoporous Materials. Wiley, Weinheim (2012)CrossRefGoogle Scholar
  34. Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, New York (1995)CrossRefGoogle Scholar
  35. Kim, S.H., Pitsch, H.: Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. J. Electrochem. Soc. 156, B673–B681 (2009)CrossRefGoogle Scholar
  36. Kim, S.H., Pitsch, H., Boyd, I.D.: Lattice Boltzmann modeling of multicomponent diffusion in narrow channels. Phys. Rev. E 79, 016702 (2009)CrossRefGoogle Scholar
  37. Krishna, R., van Baten, J.M.: Investigating the validity of the Bosanquet formula for estimation of diffusivities in mesopores. Chem. Eng. Sci. 69, 684–688 (2012)CrossRefGoogle Scholar
  38. Lange, K.J., Sui, P.-C., Djilali, N.: Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers. J. Electrochem. Soc. 157, B1434 (2010)CrossRefGoogle Scholar
  39. Lange, K.J., Sui, P.-C., Djilali, N.: Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: effects of water vapor and temperature. J. Power Sour. 196, 3195–3203 (2011)CrossRefGoogle Scholar
  40. Lange, K.J., Sui, P.-C., Djilali, N.: Determination of effective transport properties in a PEMFC catalyst layer using different reconstruction algorithms. J. Power Sour. 208, 354–365 (2012)CrossRefGoogle Scholar
  41. Litster, S., Epting, W., Wargo, E., Kalidindi, S., Kumbur, E.: Morphological analyses of polymer electrolyte fuel cell electrodes with nano-scale computed tomography imaging. Fuel Cells 13, 935–945 (2013)Google Scholar
  42. Luo, L.-S., Girimaji, S.S.: Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. Phys. Rev. E 67, 036302 (2003)CrossRefGoogle Scholar
  43. Ma, Q., Chen, Z.: Lattice Boltzmann simulation of multicomponent noncontinuum diffusion in fractal porous structures. Phys. Rev. E 92, 013025 (2015)CrossRefGoogle Scholar
  44. Nanjundappa, A., Alavijeh, A.S., El Hannach, M., Harvey, D., Kjeang, E.: A customized framework for 3-D morphological characterization of microporous layers. Electrochim. Acta 110, 349–357 (2013)CrossRefGoogle Scholar
  45. Pollard, W.G., Present, R.D.: On gaseous self-diffusion in long capillary tubes. Phys. Rev. 73, 762–774 (1948)CrossRefGoogle Scholar
  46. Shou, D., Fan, J., Mei, M., Ding, F.: An analytical model for gas diffusion though nanoscale and microscale fibrous media. Microfluid. Nanofluid. 16, 381–389 (2014)CrossRefGoogle Scholar
  47. Siddique, N., Liu, F.: Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer. Electrochim. Acta 55, 5357–5366 (2010)CrossRefGoogle Scholar
  48. Singh, R., Akhgar, A.R., Sui, P.C., Lange, K.J., Djilali, N.: Dual-Beam FIB/SEM characterization, statistical reconstruction, and pore scale modeling of a PEMFC catalyst layer. J. Electrochem. Soc. 161, F415–F424 (2014)CrossRefGoogle Scholar
  49. Tomadakis, M.M., Sotirchos, S.V.: Effective Kundsen diffusivities in structures of randomly overlapping fibers. AIChE J. 37, 74–86 (1991)CrossRefGoogle Scholar
  50. Tomadakis, M.M., Sotirchos, S.V.: Ordinary and transition regime diffusion in random fiber structures. AIChE J. 39, 397–412 (1993)CrossRefGoogle Scholar
  51. Wang, M.: Structure effects on electro-osmosis in microporous media. J. Heat. Trans. T ASME 134, 051020 (2012)CrossRefGoogle Scholar
  52. Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep. 63, 1–30 (2008)CrossRefGoogle Scholar
  53. Wang, M., Wang, J., Pan, N., Chen, S.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75, 036702 (2007a)CrossRefGoogle Scholar
  54. Wang, M., He, J., Yu, J., Pan, N.: Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Int. J. Thermal Sci. 46, 848–855 (2007b)CrossRefGoogle Scholar
  55. Wang, Z., Guo, Y., Wang, M.: Permeability of high-Kn real gas flow in shale and production prediction by pore-scale modeling. J. Na. Gas Sci. Eng. 28, 328–337 (2016)CrossRefGoogle Scholar
  56. Yang, F., Gu, J., Ye, L., Zhang, Z., Rao, G., Liang, Y., Wen, K., Zhao, J., Goodenough, J.B., He, W.: Justifying the significance of Knudsen diffusion in solid oxide fuel cells. Energy 95, 242–246 (2016)CrossRefGoogle Scholar
  57. Yoshida, H., Nagaoka, M.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229, 7774–7795 (2010)CrossRefGoogle Scholar
  58. Yu, Z., Carter, R.N.: Measurement of effective oxygen diffusivity in electrodes for proton exchange membrane fuel cells. J. Power Sour. 195, 1079–1084 (2010)CrossRefGoogle Scholar
  59. Yu, Z., Carter, R.N., Zhang, J.: Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes. Fuel Cells 12, 557–565 (2012)CrossRefGoogle Scholar
  60. Yuan, J.L., Sunden, B.: On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes. Int J Heat Mass Tran 69, 358–374 (2014)CrossRefGoogle Scholar
  61. Zamel, N., Li, X.: Effective transport properties for polymer electrolyte membrane fuel cells—with a focus on the gas diffusion layer. Prog. Energy Combust. Sci. 39, 111–146 (2013)CrossRefGoogle Scholar
  62. Zamel, N., Becker, J., Wiegmann, A.: Estimating the thermal conductivity and diffusion coefficient of the microporous layer of polymer electrolyte membrane fuel cells. J. Power Sources 207, 70–80 (2012)CrossRefGoogle Scholar
  63. Zhang, X., Gao, Y., Ostadi, H., Jiang, K., Chen, R.: Modelling water intrusion and oxygen diffusion in a reconstructed microporous layer of PEM fuel cells. Int. J. Hydrogen Energy 39, 17222–17230 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Engineering Mechanics and CNMMTsinghua UniversityBeijingChina

Personalised recommendations