Advertisement

Transport in Porous Media

, Volume 126, Issue 2, pp 411–429 | Cite as

Lattice Boltzmann Simulation of Immiscible Displacement in Porous Media: Viscous Fingering in a Shear-Thinning Fluid

  • Menghao Wang
  • Youming XiongEmail author
  • Liming Liu
  • Geng Peng
  • Zheng Zhang
Article

Abstract

In this work, we investigate immiscible displacement in porous media with the displaced fluid being shear-thinning. We focus on the influence the heterogeneous viscosity field in the shear-thinning fluid brings on viscous fingering, which has received little attention in the existing researches. Lattice Boltzmann simulations of immiscible displacement with a power law model implementation in the displaced fluid are conducted. The lattice Boltzmann algorithm is validated against Newtonian and non-Newtonian flows in a channel. The effects of the shear-thinning property and the viscosity heterogeneity on viscous fingering are considered in the simulations. The results show that with stronger shear-thinning property (lower power law exponent n), there is stronger viscosity heterogeneity in the displaced fluid, and the viscous fingering shows weaker instability. The influence of a heterogeneous viscosity field on viscous fingering is dominated by the viscosity in the low-viscosity regions, while the high-viscosity regions show little influence. The influence of the local viscosity on viscous fingering is dependent upon the local shear rate. A concept of ‘effective field viscosity’ is introduced to quantitatively characterize a heterogeneous viscosity field. A shear rate weighted averaging algorithm is proposed to calculate the effective field viscosity from a heterogeneous viscosity field. The algorithm is tested in several cases and shows good performance to represent the influence of the heterogeneous viscosity field.

Keywords

Immiscible displacement Viscous fingering Shear-thinning fluid Heterogeneous viscosity field Lattice Boltzmann method 

List of Symbols

\(\bar{L}\)

Dimensionless interfacial length

\(\bar{t}\)

Dimensionless lattice time

\(\mathbf e \)

Velocity vectors

\(\mathbf F \)

Surface tension

\(\mathbf G \)

Body force

\(\mathbf u \)

Velocity vector (lu/ts)

\(\mathbf x \)

Coordinates of lattice nodes

\(\theta \)

Static contact angle (\(^{\circ }\))

c

Lattice speed (lu/ts)

f

Index distribution function

g

Pressure distribution function

H

Width of simulation field (lu)

L

Interfacial length (lu)

lu

Lattice length unit

M

Viscosity ratio (\(\mu _\mathrm{d}/\mu _\mathrm{in}\))

n

Power law exponent

p

Pressure

S

Shear strain tensor

t

Lattice time

ts

Lattice time step

u

Local velocity (lu/ts)

w

Weighting coefficients

Greek Letters

\(\gamma \)

Shear rate (/ts)

\(\kappa \)

Parameter to control surface tension magnitude

\(\mu \)

Dynamic viscosity

\(\nu \)

Kinematic viscosity

\(\phi \)

Index function

\(\varPi \)

Momentum flux tensor

\(\rho \)

Density

\(\tau \)

Relaxation factor

Superscripts

eq

Equilibrium state

Subscripts

d

Displaced fluid

e

Effective field value

i

Directions in the D2Q9 model

in

Invading fluid

l

Local node value

m

Mean value

max

Maximum value

min

Minimum value

s

Sound

References

  1. Al-Gharbi, M.S., Blunt, M.J.: Dynamic network modeling of two-phase drainage in porous media. Phys. Rev. E 71(1), 016308 (2005)Google Scholar
  2. Amirian, E., Dejam, M., Chen, Z.: Performance forecasting for polymer flooding in heavy oil reservoirs. Fuel 216, 83–100 (2018)Google Scholar
  3. Artoli, A.M.M.A.M.H.: Mesoscopic Computational Haemodynamics. Ponsen & Looijen, Wageningen (2003)Google Scholar
  4. Bandara, U.C., Tartakovsky, A.M., Oostrom, M., Palmer, B.J., Grate, J., Zhang, C.: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Adv. Water Resour. 62, 356–369 (2013)Google Scholar
  5. Blunt, M., King, P.: Relative permeabilities from two-and three-dimensional pore-scale network modelling. Transp. Porous Media 6(4), 407–433 (1991)Google Scholar
  6. Boek, E.S., Chin, J., Coveney, P.V.: Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media. Int. J. Mod. Phys. B 17(01n02), 99–102 (2003)Google Scholar
  7. Carnahan, N.F., Starling, K.E.: Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51(2), 635–636 (1969)Google Scholar
  8. Dejam, M.: Dispersion in non-Newtonian fluid flows in a conduit with porous walls. Chem. Eng. Sci. 189, 296–310 (2018)Google Scholar
  9. Dejam, M., Hassanzadeh, H.: Diffusive leakage of brine from aquifers during Co\(_{2}\) geological storage. Adv. Water Resour. 111, 36–57 (2018)Google Scholar
  10. Dejam, M., Hassanzadeh, H., Chen, Z.: Shear dispersion in a fracture with porous walls. Adv. Water Resour. 74, 14–25 (2014)Google Scholar
  11. Dejam, M., Hassanzadeh, H., Chen, Z.: Shear dispersion in a capillary tube with a porous wall. J. Contam. Hydrol. 185–186, 87–104 (2016)Google Scholar
  12. Fakhari, A., Rahimian, M.H.: Phase-field modeling by the method of lattice Boltzmann equations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(2), 036707 (2010)Google Scholar
  13. Ferer, M., Ji, C., Bromhal, G.S., Cook, J., Ahmadi, G., Smith, D.H.: Crossover from capillary fingering to viscous fingering for immiscible unstable flow: experiment and modeling. Phys. Rev. E 70(1), 016303 (2004)Google Scholar
  14. Fontana, J.V., Dias, E.O., Miranda, J.A.: Controlling and minimizing fingering instabilities in non-Newtonian fluids. Phys. Rev. E 89(1), 013016 (2014)Google Scholar
  15. Gouet-Kaplan, M., Tartakovsky, A., Berkowitz, B.: Simulation of the interplay between resident and infiltrating water in partially saturated porous media. Water Resour. Res. 45(5), W05416 (2009)Google Scholar
  16. Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320 (1991)Google Scholar
  17. Guo, Z., Zheng, C., Shi, B.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14(6), 2007–2010 (2002)Google Scholar
  18. Hao, L., Cheng, P.: Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method. Int. J. Heat Mass Transf. 53(9–10), 1908–1913 (2010)Google Scholar
  19. He, X., Chen, S., Zhang, R.: A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152(2), 642–663 (1999)Google Scholar
  20. Hiroyuki, O., Churchill, S.W.: Hydrodynamic stability and natural convection in Ostwaldde Waele and Ellis fluids: the development of a numerical solution. Aiche J. 18(6), 1196–1207 (2010)Google Scholar
  21. Huang, H., Meakin, P., Liu, M.: Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method. Water Resour. Res. 41(12), W12413 (2005)Google Scholar
  22. Huang, H., Huang, J.-J., Lu, X.-Y.: Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Comput. Fluids 93, 164–172 (2014)Google Scholar
  23. Jettestuen, E., Helland, J.O., Prodanović, M.: A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49(8), 4645–4661 (2013)Google Scholar
  24. Lee, T., Lin, C.-L.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206(1), 16–47 (2005)Google Scholar
  25. Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)Google Scholar
  26. Lindner, A., Bonn, D., Meunier, J.: Viscous fingering in a shear-thinning fluid. Phys. Fluids 12(2), 256–261 (2000)Google Scholar
  27. Lindner, A., Coussot, P., Bonn, D.: Viscous fingering in a yield stress fluid. Phys. Rev. Lett. 85(2), 314 (2000)Google Scholar
  28. Lindner, A., Bonn, D., Poiré, E.C., Amar, M.B., Meunier, J.: Viscous fingering in non-Newtonian fluids. J. Fluid Mech. 469, 237–256 (2002)Google Scholar
  29. Liu, H., Valocchi, A.J., Kang, Q., Werth, C.: Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method. Transp. Porous Media 99(3), 555–580 (2013)Google Scholar
  30. Liu, H., Valocchi, A.J., Werth, C., Kang, Q., Oostrom, M.: Pore-scale simulation of liquid Co\(_{2}\) displacement of water using a two-phase lattice Boltzmann model. Adv. Water Resour. 73, 144–158 (2014)Google Scholar
  31. Liu, H., Zhang, Y., Valocchi, A.J.: Lattice Boltzmann simulation of immiscible fluid displacement in porous media: homogeneous versus heterogeneous pore network. Phys. Fluids 27(5), 052103 (2015)Google Scholar
  32. Liu, H., Kang, Q., Leonardi, C.R., Schmieschek, S., Narváez, A., Jones, B.D., Williams, J.R., Valocchi, A.J., Harting, J.: Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 20(4), 777–805 (2016)Google Scholar
  33. Lou, Q., Guo, Z., Shi, B.: Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation. Phys. Rev. E 87(6), 063301 (2013)Google Scholar
  34. Mashayekhizadeh, V., Kord, S., Dejam, M.: Eor potential within Iran. Spec. Top. Rev. Porous Media 5(4), 325–354 (2014)Google Scholar
  35. Mora, S., Manna, M.: Saffman–Taylor instability of viscoelastic fluids: from viscous fingering to elastic fractures. Phys. Rev. E 81(2), 026305 (2010)Google Scholar
  36. Mora, S., Manna, M.: From viscous fingering to elastic instabilities. J Non-Newton. Fluid Mech. 173, 30–39 (2012)Google Scholar
  37. Nadirah, L., Abdurahman, H.N., Rizauddin, D.: Rheological study of petroleum fluid and oil-in-water emulsion. Int. J. Eng. Sci. Res. Technol. 3(1), 2277–9655 (2014)Google Scholar
  38. Pan, C., Luo, L.-S., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35(8–9), 898–909 (2006)Google Scholar
  39. Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. I. Model description. Phys. Rev. E 71(2), 026301 (2005)Google Scholar
  40. Prodanović, M., Bryant, S.L.: A level set method for determining critical curvatures for drainage and imbibition. J. Colloid Interface Sci. 304(2), 442–458 (2006)Google Scholar
  41. Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231(17), 5653–5668 (2012)Google Scholar
  42. Reis, T., Phillips, T.N.: Lattice Boltzmann model for simulating immiscible two-phase flows. J. Phys. A Math. Theor. 40(14), 4033 (2007)Google Scholar
  43. Riaz, A., Tchelepi, H.A.: Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation. Phys. Fluids 16(12), 4727–4737 (2004)Google Scholar
  44. Riaz, A., Tchelepi, H.A.: Influence of relative permeability on the stability characteristics of immiscible flow in porous media. Transp. Porous Media 64(3), 315–338 (2006)Google Scholar
  45. Rønningsen, H.P.: Rheology of petroleum fluids. Ann. Trans. Nord. Rheol. Soc. 20, 11–18 (2012)Google Scholar
  46. Rothman, D.H., Keller, J.M.: Immiscible cellular-automaton fluids. J. Stat. Phys. 52(3), 1119–1127 (1988)Google Scholar
  47. Saboorian-Jooybari, H., Dejam, M., Chen, Z., et al.: Half-century of heavy oil polymer flooding from laboratory core floods to pilot tests and field applications. In: SPE Canada Heavy Oil Technical Conference. Society of Petroleum Engineers (2015)Google Scholar
  48. Saboorian-Jooybari, H., Dejam, M., Chen, Z.: Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: half-century studies. J. Pet. Sci. Eng. 142, 85–100 (2016)Google Scholar
  49. Sader, J.E., Chan, D.Y.C., Hughes, B.D.: Non-Newtonian effects on immiscible viscous fingering in a radial Hele–Shaw cell. Phys. Rev. E 49(1), 420 (1994)Google Scholar
  50. Sahu, K.C., Vanka, S.P.: A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel. Comput. Fluids 50(1), 199–215 (2011)Google Scholar
  51. Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815 (1993)Google Scholar
  52. Shan, X., Chen, H.: Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49(4), 2941 (1994)Google Scholar
  53. Shan, X., Doolen, G.: Multicomponent lattice-Boltzmann model with interparticle interaction. J. Stat. Phys. 81(1), 379–393 (1995)Google Scholar
  54. Shi, Y., Tang, G.H.: Non-newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method. J. Non-Newton. Fluid Mech. 229, 86–95 (2016)Google Scholar
  55. Singh, B.K., Azaiez, J.: Numerical simulation of viscous fingering of shear-thinning fluids. Can. J. Chem. Eng. 79(6), 961–967 (2001)Google Scholar
  56. Sullivan, S.P., Gladden, L.F., Johns, M.L.: Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques. J. Non-Newton. Fluid Mech. 133(2–3), 91–98 (2006)Google Scholar
  57. Swift, M.R., Orlandini, E., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54(5), 5041 (1996)Google Scholar
  58. Tartakovsky, A.M., Meakin, P.: A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability. J. Comput. Phys. 207(2), 610–624 (2005)Google Scholar
  59. Wang, Z., Feyen, J., Elrick, D.E.: Prediction of fingering in porous media. Water Resour. Res. 34(9), 2183–2190 (1998)Google Scholar
  60. Wang, M., Xiong, Y., Liu, L., Peng, G.: Lbm investigation of immiscible displacement in a channel with regular surface roughness. Transp. Porous Media 123(1), 195–215 (2018)Google Scholar
  61. Xiong, Q., Baychev, T.G., Jivkov, A.P.: Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 192, 101–117 (2016)Google Scholar
  62. Yamamoto, T., Kamikawa, H., Mori, N., Nakamura, K.: Numerical simulation of viscous fingering in non-Newtonian fluids in a Hele–Shaw cell. Nihon Reoroji Gakkaishi 30(3), 121–127 (2002)Google Scholar
  63. Yamamoto, T., Kimoto, R., Mori, N.: Tip velocity of viscous fingers in shear-thinning fluids in a Hele–Shaw cell. JSME Int. J. Ser. B Fluids Therm. Eng. 48(4), 756–762 (2005)Google Scholar
  64. Yortsos, Y.C., Hickernell, F.J.: Linear stability of immiscible displacement in porous media. SIAM J. Appl. Math. 49(3), 730–748 (1989)Google Scholar
  65. Zhang, R., He, X., Chen, S.: Interface and surface tension in incompressible lattice Boltzmann multiphase model. Comput. Phys. Commun. 129(1–3), 121–130 (2000)Google Scholar
  66. Zhang, C., Oostrom, M., Wietsma, T.W., Grate, J.W., Warner, M.G.: Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels 25(8), 3493–3505 (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Menghao Wang
    • 1
  • Youming Xiong
    • 1
    Email author
  • Liming Liu
    • 1
  • Geng Peng
    • 1
  • Zheng Zhang
    • 1
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina

Personalised recommendations