Advertisement

Anomalous Dispersion in Pore-Scale Simulations of Two-Phase Flow

  • Dimetre Triadis
  • Fei Jiang
  • Diogo Bolster
Article
  • 52 Downloads

Abstract

We investigate anomalous dispersion in steady-state two-phase flow though a random, artificial porous domain. A natural distribution of trapped wetting-phase fluid was obtained via two-phase lattice Boltzmann drainage simulations. To avoid spurious velocities, accurate inter-pore velocity fields were derived via additional one-phase lattice Boltzmann simulations incorporating slip boundary conditions imposed at various interfaces. The nature of the active dispersion at various timescales was subsequently studied via random walk particle tracking. For our system, results show persistent anomalous dispersion that depends strongly on the assumed molecular diffusivity and the initial positions of tracer particles. Imposing slip versus no-slip boundary conditions on fluid–fluid interfaces made no observable difference to results, indicating that observed anomalous dispersion resulted primarily from the complex flow network induced by the trapped fluid phase.

Keywords

Multiphase flow Anomalous transport 

Notes

Acknowledgements

This research was made possible by a Kyushu University, International Institute for Carbon Neutral Energy Research (\(\hbox {I}^{2}\hbox {CNER}\)), Competitive Funding Initiative on Applied Math for Energy Project Grant. We would also like to express thanks for financial support via NSF Grants EAR-1351625, EAR-1446236 and CBET-1803989, as well as a JSPS Grant-in-Aid for Young Scientists (16K18331).

References

  1. Bachu, S.: Sequestration of \(\text{ CO }_2\) in geological media: criteria and approach for site selection in response to climate change. Energy Convers. Manag. 41(9), 953–970 (2000)CrossRefGoogle Scholar
  2. Berglund, S., Bosson, E., Selroos, J.O., Sassner, M.: Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden. Ambio 42(4), 435–446 (2013)CrossRefGoogle Scholar
  3. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2) (2006).  https://doi.org/10.1029/2005RG000178
  4. Berning, T., Djilali, N.: A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J. Electrochem. Soc. 150(12), A1589–A1598 (2003)CrossRefGoogle Scholar
  5. Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. (2006).  https://doi.org/10.1029/2005WR004578
  6. Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-Fickian solute transport in carbonates. Water Resour. Res. 49(5), 2714–2728 (2013a)CrossRefGoogle Scholar
  7. Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011 (2013b)CrossRefGoogle Scholar
  8. Bolster, D., Valdés-Parada, F.J., LeBorgne, T., Dentz, M., Carrera, J.: Mixing in confined stratified aquifers. J. Contam. Hydrol. 120, 198–212 (2011)CrossRefGoogle Scholar
  9. Bolster, D., Méheust, Y., Le Borgne, T., Bouquain, J., Davy, P.: Modeling preasymptotic transport in flows with significant inertial and trapping effects-the importance of velocity correlations and a spatial Markov model. Adv. Water Resour. 70, 89–103 (2014)CrossRefGoogle Scholar
  10. Bouwer, H.: Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J. 10(1), 121–142 (2002)CrossRefGoogle Scholar
  11. Brenner, H.: Macrotransport Processes. Elsevier, New York (2013)Google Scholar
  12. Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. (2004).  https://doi.org/10.1029/2003WR002579
  13. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)CrossRefGoogle Scholar
  14. Connington, K., Lee, T.: A review of spurious currents in the lattice Boltzmann method for multiphase flows. J. Mech. Sci. Technol. 26(12), 3857–3863 (2012)CrossRefGoogle Scholar
  15. Daly, E., Porporato, A.: A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ. Eng. Sci. 22(1), 9–24 (2005)CrossRefGoogle Scholar
  16. De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)CrossRefGoogle Scholar
  17. Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 1–17 (2011)CrossRefGoogle Scholar
  18. Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T., Lester, D.R.: Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1(7), 074004 (2016)CrossRefGoogle Scholar
  19. de Barros, F.P., Bolster, D., Sanchez-Vila, X., Nowak, W.: A divide and conquer approach to cope with uncertainty, human health risk, and decision making in contaminant hydrology. Water Resour. Res. (2011).  https://doi.org/10.1029/2010WR009954
  20. de Barros, F., Fernàndez-Garcia, D., Bolster, D., Sanchez-Vila, X.: A risk-based probabilistic framework to estimate the endpoint of remediation: concentration rebound by rate-limited mass transfer. Water Resour. Res. 49(4), 1929–1942 (2013)CrossRefGoogle Scholar
  21. Fernández-Arévalo, T., Lizarralde, I., Grau, P., Ayesa, E.: New systematic methodology for incorporating dynamic heat transfer modelling in multi-phase biochemical reactors. Water Res. 60, 141–155 (2014)CrossRefGoogle Scholar
  22. Galliero, G.: Lennard-Jones fluid-fluid interfaces under shear. Phys. Rev. E (2010).  https://doi.org/10.1103/PhysRevE.81.056306
  23. Gómez-Hernández, J.J., Butler, J., Fiori, A., Bolster, D., Cvetkovic, V., Dagan, G., Hyndman, D.: Introduction to special section on modeling highly heterogeneous aquifers: lessons learned in the last 30 years from the MADE experiments and others. Water Resour. Res. 53(4), 2581–2584 (2017)CrossRefGoogle Scholar
  24. Guillon, V., Fleury, M., Bauer, D., Neel, M.C.: Superdispersion in homogeneous unsaturated porous media using NMR propagators. Phys. Rev. E 87(4), 043007 (2013)CrossRefGoogle Scholar
  25. Higdon, J.J.L.: Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159, 195–226 (1985)CrossRefGoogle Scholar
  26. Hu, Y., Zhang, X., Wang, W.: Boundary conditions at the liquid-liquid interface in the presence of surfactants. Langmuir 26(13), 10693–10702 (2010)CrossRefGoogle Scholar
  27. Iglauer, S.: Dissolution trapping of carbon dioxide in reservoir formation brine—a carbon storage mechanism. In: Mass Transfer — Advanced Aspects, InTech, pp. 233–262 (2011)Google Scholar
  28. Jiang, F., Tsuji, T.: Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images. Water Resour. Res. 53(1), 11–32 (2017)CrossRefGoogle Scholar
  29. Jiang, F., Tsuji, T., Hu, C.: Elucidating the role of interfacial tension for hydrological properties of two-phase flow in natural sandstone by an improved lattice Boltzmann method. Transp. Porous Media 104(1), 205–229 (2014)CrossRefGoogle Scholar
  30. Jiménez-Martínez, J., Anna, Pd, Tabuteau, H., Turuban, R., Borgne, T.L., Méheust, Y.: Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and implications for chemical reactions. Geophys. Res. Lett. 42(13), 5316–5324 (2015)CrossRefGoogle Scholar
  31. Jiménez-Martínez, J., Porter, M.L., Hyman, J.D., Carey, J.W., Viswanathan, H.S.: Mixing in a three-phase system: enhanced production of oil-wet reservoirs by \(\text{ CO }_2\) injection. Geophys. Res. Lett. 43(1), 196–205 (2016)CrossRefGoogle Scholar
  32. Kang, P.K., Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014)CrossRefGoogle Scholar
  33. Kazemifar, F., Blois, G., Kyritsis, D.C., Christensen, K.T.: Quantifying the flow dynamics of supercritical \(\text{ CO }_2\)-water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV. Adv. Water Resour. 95, 352–368 (2016)CrossRefGoogle Scholar
  34. Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  35. Latva-Kokko, M., Rothman, D.H.: Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72, 046701 (2005).  https://doi.org/10.1103/PhysRevE.72.046701 CrossRefGoogle Scholar
  36. Le Borgne, T., Bolster, D., Dentz, M., Anna, P., Tartakovsky, A.: Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach. Water Resour. Res. 47(12) (2011). https://doi.org/10.1029/2011WR010457
  37. Leclaire, S., Reggio, M., Trépanier, J.Y.: Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. Appl. Math. Model. 36(5), 2237–2252 (2012)CrossRefGoogle Scholar
  38. Mercer, J.W., Cohen, R.M.: A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6(2), 107–163 (1990)CrossRefGoogle Scholar
  39. Nützmann, G., Maciejewski, S., Joswig, K.: Estimation of water saturation dependence of dispersion in unsaturated porous media: experiments and modelling analysis. Adv. Water Res. 25(5), 565–576 (2002)CrossRefGoogle Scholar
  40. Pan, F., Acrivos, A.: Steady flows in rectangular cavities. J. Fluid Mech. 28(4), 643–655 (1967)CrossRefGoogle Scholar
  41. Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier—Stokes equation. EPL (Euro. Lett.) 17(6), 479–484 (1992)CrossRefGoogle Scholar
  42. Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp. Porous Media 94(2), 487–504 (2012)CrossRefGoogle Scholar
  43. Raoof, A., Hassanizadeh, S.: Saturation-dependent solute dispersivity in porous media: pore-scale processes. Water Resour. Res. 49(4), 1943–1951 (2013)CrossRefGoogle Scholar
  44. Risken, H.: Fokker–planck equation. In: The Fokker–Planck Equation, Springer, pp 63–95 (1996)Google Scholar
  45. Sato, T., Tanahashi, H., Loáiciga, H.A.: Solute dispersion in a variably saturated sand. Water Resour. Res. (2003).  https://doi.org/10.1029/2002WR001649
  46. Schönecker, C., Hardt, S.: Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J. Fluid Mech. 717, 376–394 (2013)CrossRefGoogle Scholar
  47. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. (2003).  https://doi.org/10.1029/2003WR002141
  48. Singh, S., Jiang, F., Tsuji, T.: Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation. Phys. Rev. E 96, 013303 (2017).  https://doi.org/10.1103/PhysRevE.96.013303 CrossRefGoogle Scholar
  49. Singha, K., Day-Lewis, F.D., Lane, J.: Geoelectrical evidence of bicontinuum transport in groundwater. Geophys. Res. Lett. 34(12) (2007). https://doi.org/10.1029/2007GL030019
  50. Sund, N., Bolster, D., Mattis, S., Dawson, C.: Pre-asymptotic transport upscaling in inertial and unsteady flows through porous media. Transp. Porous Media 109(2), 411–432 (2015)CrossRefGoogle Scholar
  51. Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 219(1137), 186–203 (1953)CrossRefGoogle Scholar
  52. Tölke, J.: Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. Transact. R. Soc. Lond. A: Math. Phys. Eng. Sce 360(1792), 535–545 (2002)CrossRefGoogle Scholar
  53. Vanderborght, J., Vereecken, H.: Review of dispersivities for transport modeling in soils. Vadose Zone J. 6(1), 29–52 (2007)CrossRefGoogle Scholar
  54. Whitaker, S.: The Method of Volume Averaging, vol. 13. Springer, Berlin (2013)Google Scholar
  55. Wildenschild, D., Jensen, K.H.: Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands. Water Resour. Res. 35(1), 17–27 (1999)CrossRefGoogle Scholar
  56. Wood, B.D.: Inertial effects in dispersion in porous media. Water Resour. Res. (2007).  https://doi.org/10.1029/2006WR005790
  57. Zhang, Y., Benson, D.A.: Lagrangian simulation of multidimensional anomalous transport at the MADE site. Geophys. Res. Lett. (2008).  https://doi.org/10.1029/2008GL033222 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Mathematics for IndustryKyushu UniversityFukuokaJapan
  2. 2.Department of Mechanical EngineeringYamaguchi UniversityUbeJapan
  3. 3.CO2 Storage Division, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu UniversityFukuokaJapan
  4. 4.Blue energy center for SGE technology (BEST)Yamaguchi UniversityUbeJapan
  5. 5.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameUSA

Personalised recommendations