Advertisement

Transport in Porous Media

, Volume 126, Issue 2, pp 295–315 | Cite as

A Simple Molecular Kerogen Pore-Network Model for Transport Simulation in Condensed Phase Digital Source-Rock Physics

  • Feng FengEmail author
  • I. Yucel Akkutlu
Article
  • 82 Downloads

Abstract

Transport of small hydrocarbon molecules inside organic nanopores is of great interest in the oil and gas production from source rocks such as shale. Because of the small pore sizes, it is difficult to measure transport directly in the laboratory but require alternative approaches such as molecular simulation. Existing molecular models use nanoscale capillaries and do not describe the exact geometric structure of the organic nanopores in real source rocks, especially for mesopores (2–50 nm in diameter, defined by IUPAC), which widely exist in organic solids and are crucial for fluid transport in the source rocks. Here we present a new method to simplify the existing molecular kerogen models. Pore structures can be built to reflect the exact porous structure of hydrocarbon-bearing kerogen pores for fluid transport without losing accuracy. The kerogen pore-network skeleton can be populated based on 3D digital segments obtained from high-resolution TEM tomographs, combining with other material properties, including the elemental composition and density of the organic solid. The basic idea of the simplified molecular model is to ignore the detailed chemical information of the kerogen molecules and to use a uniform “representative” atom to replace all various atom types, while maintaining the geometric structure intact. To test the transport simulation accuracy using molecular dynamics for this simplified model, sample pore-network structures are populated with both the existing exact molecular model and the simplified model, and the permeability of reservoir fluid flowing through the media is simulated and compared. Specifically, simple reservoir fluids are charged into the space of the 3D porous networks with grand canonical Monte Carlo simulation at given subsurface condition; then, the fluids are driven by an external force field to flow through the network using non-equilibrium molecular dynamics simulation. The simplified kerogen model can be easily applied to larger organic porous material samples to reduce spatial uncertainty, provided enough computational resources.

Keywords

Digital rock physics Kerogen Molecular simulation Permeability 

List of symbols

D

Diffusivity

k

Permeability

µ

Permeability

ΔP

Pressure drop

ΔX

Length of sample

Δc

Concentration drop

\( \overline{v}_{x} \)

Average Darcy velocity

J

Flux

c

Concentration

V, E

Potential energy

m

Atomic mass

n

Number of atoms

q

Atomic charge

Notes

Acknowledgements

This material is based upon work supported by the Crisman Institute for Petroleum Research and Berg-Hughes Center of Texas A&M University, with the help from High Performance Research Computing of Texas A&M University for numerical simulation work.

References

  1. Adesida, A., Akkutlu, I., Resasco, D., Rai, C.: Kerogen pore size distribution of Barnett shale using DFT analysis and Monte Carlo simulations. Paper SPE 147397 presented during the SPE annual technical conference and exhibition held in Denver, Colorado, 30 October–2 November (2011). doi: http://dx.doi.org/10.2118/147397-MS
  2. Ambrose, R.J., Hartman, R.C., Diaz Campos, M., Akkutlu, I.Y., Sondergeld, C.: New pore-scale considerations for shale gas in place calculations. Paper presented at the SPE Unconventional Gas Conference (2010)Google Scholar
  3. Andra, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-Part I: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013a).  https://doi.org/10.1016/j.cageo.2012.09.005 CrossRefGoogle Scholar
  4. Andra, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013b).  https://doi.org/10.1016/j.cageo.2012.09.008 CrossRefGoogle Scholar
  5. Arya, G., Chang, H.C., Maginn, E.J.: A critical comparison of equilibrium, non-equilibrium and boundary-driven molecular dynamics techniques for studying transport in microporous materials. J. Chem. Phys. 115(17), 8112–8124 (2001).  https://doi.org/10.1063/1.1407002 CrossRefGoogle Scholar
  6. Bhattacharya, S., Gubbins, K.E.: Fast method for computing pore size distributions of model materials. Langmuir 22(18), 7726–7731 (2006).  https://doi.org/10.1021/la052651k CrossRefGoogle Scholar
  7. Bousige, C., Botan, A., Ulm, F.J., Pellenq, R.J.M., Coasne, B.: Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics. J. Chem. Phys. (2015).  https://doi.org/10.1063/1.4914921 Google Scholar
  8. Bousige, C., Ghimbeu, C.M., Vix-Guterl, C., Pomerantz, A.E., Suleimenova, A., Vaughan, G., Garbarino, G., Feygenson, M., Wildgruber, C., Ulm, F.J., Pellenq, R.J.M., Coasne, B.: Realistic molecular model of kerogen’s nanostructure. Nat. Mater. 15(5), 576 (2016).  https://doi.org/10.1038/nmat4541 CrossRefGoogle Scholar
  9. Collell, J., Ungerer, P., Galliero, G., Yiannourakou, M., Montel, F., Pujol, M.: Molecular simulation of bulk organic matter in type II shales in the middle of the oil formation window. Energy Fuels 28(12), 7457–7466 (2014).  https://doi.org/10.1021/ef5021632 CrossRefGoogle Scholar
  10. Collell, J., Galliero, G., Vermorel, R., Ungerer, P., Yiannourakou, M., Montel, F., Pujol, M.: Transport of multicomponent hydrocarbon mixtures in shale organic matter by molecular simulations. J. Phys. Chem. C 119(39), 22587–22595 (2015).  https://doi.org/10.1021/acs.jpcc.5b07242 CrossRefGoogle Scholar
  11. Dauberosguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., Hagler, A.T.: Structure and energetics of ligand-binding to proteins—Escherichia coli dihydrofolate reductase trimethoprim, a drug-receptor system. Proteins Struct. Funct. Genet. 4(1), 31–47 (1988).  https://doi.org/10.1002/prot.340040106 CrossRefGoogle Scholar
  12. Evans, D.J., Morriss, G.P.: Isothermal isobaric molecular-dynamics. Chem. Phys. 77(1), 63–66 (1983).  https://doi.org/10.1016/0301-0104(83)85065-4 CrossRefGoogle Scholar
  13. Falk, K., Coasne, B., Pellenq, R., Ulm, F.J., Bocquet, L.: Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nat. Commun. (2015a).  https://doi.org/10.1038/ncomms7949 Google Scholar
  14. Falk, K., Pellenq, R., Ulm, F.J., Coasne, B.: Effect of chain length and pore accessibility on alkane adsorption in kerogen. Energy Fuels 29(12), 7889–7896 (2015b).  https://doi.org/10.1021/acs.energyfuels.5b02015 CrossRefGoogle Scholar
  15. Fathi, E., Akkutlu, I.Y.: Lattice Boltzmann method for simulation of shale gas transport in kerogen. Spe J. 18(1), 27–37 (2013)CrossRefGoogle Scholar
  16. Feng, F., Akkutlu, I.Y.: Flow of hydrocarbons in nanocapillary: A non-equilibrium molecular dynamics study. Paper presented at the SPE Asia Pacific Unconventional Resources Conference and Exhibition (2015)Google Scholar
  17. Firouzi, M., Wilcox, J.: Molecular modeling of carbon dioxide transport and storage in porous carbon-based materials. Microporous Mesoporous Mater. 158, 195–203 (2012).  https://doi.org/10.1016/j.micromeso.2012.02.045 CrossRefGoogle Scholar
  18. Hahn, K., Karger, J., Kukla, V.: Single-file diffusion observation. Phys. Rev. Lett. 76(15), 2762–2765 (1996).  https://doi.org/10.1103/PhysRevLett.76.2762 CrossRefGoogle Scholar
  19. Hanasaki, I., Nakatani, A.: Flow structure of water in carbon nanotubes: Poiseuille type or plug-like? J. Chem. Phys. 124(14), 144708 (2006).  https://doi.org/10.1063/1.2187971 CrossRefGoogle Scholar
  20. Ho, T.A., Criscenti, L.J., Wang, Y.F.: Nanostructural control of methane release in kerogen and its implications to wellbore production decline. Sci. Rep. (2016).  https://doi.org/10.1038/srep28053 Google Scholar
  21. Hu, Y.L., Zhang, Q., Li, M.R., Pan, X.L., Fang, B., Zhuang, W., Han, X.W., Bao, X.H.: Facilitated diffusion of methane in pores with a higher aromaticity. J. Phys. Chem. C 120(35), 19885–19889 (2016).  https://doi.org/10.1021/acs.jpcc.6b07500 CrossRefGoogle Scholar
  22. Kou, R., Alafnan, S.F.K., Akkutlu, I.Y.: Multi-scale analysis of gas transport mechanisms in kerogen. Transp. Porous Media 116(2), 493–519 (2017).  https://doi.org/10.1007/s11242-016-0787-7 CrossRefGoogle Scholar
  23. Lee, T., Bocquet, L., Coasne, B.: Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media. Nat. Commun. (2016).  https://doi.org/10.1038/ncomms11890 Google Scholar
  24. Makrodimitris, K., Papadopoulos, G.K., Theodorou, D.N.: Prediction of permeation properties of CO2 and N2 through silicalite via molecular simulations. J. Phys. Chem. B 105(4), 777–788 (2001).  https://doi.org/10.1021/jp002866x CrossRefGoogle Scholar
  25. Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102(14), 2569–2577 (1998).  https://doi.org/10.1021/jp972543+ CrossRefGoogle Scholar
  26. Martin, M.G., Siepmann, J.I.: Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J. Phys. Chem. B 103(21), 4508–4517 (1999).  https://doi.org/10.1021/jp984742e CrossRefGoogle Scholar
  27. Milliken, K.L., Curtis, M.E.: Imaging pores in sedimentary rocks: foundation of porosity prediction. Mar. Pet. Geol. 73, 590–608 (2016).  https://doi.org/10.1016/j.marpetgeo.2016.03.020 CrossRefGoogle Scholar
  28. Mutat, T., Adler, J., Sheintuch, M.: Single species transport and self diffusion in wide single-walled carbon nanotubes. J. Chem. Phys. (2012).  https://doi.org/10.1063/1.4727759 Google Scholar
  29. Riewchotisakul, S., Akkutlu, I.Y.:( Molecular transport of simple gases in carbon nanotubes under high pressure and temperature using NEMD. Submitted to AICHE Journal (2014)Google Scholar
  30. Sun, H.: (PCFF) Ab-initio calculations and force-field development for computer-simulation of polysilanes. Macromolecules 28(3), 701–712 (1995).  https://doi.org/10.1021/ma00107a006 CrossRefGoogle Scholar
  31. Sun, H.: COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998).  https://doi.org/10.1021/jp980939v CrossRefGoogle Scholar
  32. Sun, H., Mumby, S.J., Maple, J.R., Hagler, A.T.: PCFF: an ab initio Cff93 all-atom force-field for polycarbonates. J. Am. Chem. Soc. 116(7), 2978–2987 (1994).  https://doi.org/10.1021/ja00086a030 CrossRefGoogle Scholar
  33. Ungerer, P., Collell, J., Yiannourakou, M.: Molecular modeling of the volumetric and thermodynamic properties of kerogen: influence of organic type and maturity. Energy Fuels 29(1), 91–105 (2015).  https://doi.org/10.1021/ef502154k CrossRefGoogle Scholar
  34. Vandenbroucke, M.: Kerogen: from types to models of chemical structure. Oil Gas Sci. Technol. Rev. D Ifp Energies Nouvelles 58(2), 243–269 (2003).  https://doi.org/10.2516/ogst:2003016 CrossRefGoogle Scholar
  35. Zhou, B., Xu, R.N., Jiang, P.X.: Novel molecular simulation process design of adsorption in realistic shale kerogen spherical pores. Fuel 180, 718–726 (2016).  https://doi.org/10.1016/j.fuel.2016.04.096 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations