Advertisement

Capillarity-Driven Oil Flow in Nanopores: Darcy Scale Analysis of Lucas–Washburn Imbibition Dynamics

  • Simon Gruener
  • Patrick Huber
Article
  • 127 Downloads

Abstract

We present gravimetrical and optical imaging experiments on the capillarity-driven imbibition of silicone oils in monolithic silica glasses traversed by 3D networks of pores (mesoporous Vycor glass with 6.5 nm or 10 nm pore diameters). As evidenced by a robust square root of time Lucas–Washburn (L–W) filling kinetics, the capillary rise is governed by a balance of capillarity and viscous drag forces in the absence of inertia and gravitational effects over the entire experimental times studied, ranging from a few seconds up to 10 days. A video on the infiltration process corroborates a collective pore filling as well as pronounced imbibition front broadening resulting from the capillarity and permeability disorder, typical of Vycor glasses. The transport process is analyzed within a Darcy scale description, considering a generalized prefactor of the L–W law, termed Lucas–Washburn–Darcy imbibition ability. It assumes a Hagen–Poiseuille velocity profile in the pores and depends on the porosity, the mean pore diameter, the tortuosity and the velocity slip length and thus on the effective hydraulic pore diameter. For both matrices a reduced imbibition speed and thus reduced imbibition ability, compared to the one assuming the nominal pore diameter, bulk fluidity and bulk capillarity, can be quantitatively traced to an immobile, pore wall adsorbed boundary layer of 1.4 nm thickness. Presumably, it consists of a monolayer of water molecules adsorbed on the hydrophilic pore walls covered by a monolayer of flat-laying silicone oil molecules. Our study highlights the importance of immobile nanoscopic boundary layers on the flow in tight oil reservoirs as well as the validity of the Darcy scale description for transport in mesoporous media.

Keywords

Imbibition Silicone oil Mesoporous silica Nanoporous media Darcy law 

Notes

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG), Project Hu850/9-1, ”Oxidic 3d scaffold structures for wetting-assisted shaping and bonding of polymers”.

Supplementary material

11242_2018_1133_MOESM1_ESM.mpg (6.4 mb)
Supplementary material 1 (mpg 6599 KB)

References

  1. Alyafei, N., Al-Menhali, A., Blunt, M.J.: Experimental and analytical investigation of spontaneous imbibition in water-wet carbonates. Transp. Porous Media 115(1), 189–207 (2016).  https://doi.org/10.1007/s11242-016-0761-4 CrossRefGoogle Scholar
  2. Baeumchen, O., Fetzer, R., Klos, M., Lessel, M., Marquant, L., Haehl, H., Jacobs, K.: Slippage and nanorheology of thin liquid polymer films. J. Phys. Condens. Matter 24(32), 325102 (2012).  https://doi.org/10.1088/0953-8984/24/32/325102 CrossRefGoogle Scholar
  3. Bao, B., Riordon, J., Mostowfi, F., Sinton, D.: Microfluidic and nanofluidic phase behaviour characterization for industrial CO\(_2\), oil and gas. Lab On A Chip 17(16), 2740–2759 (2017).  https://doi.org/10.1039/c7lc00301c CrossRefGoogle Scholar
  4. Barrat, J., Bocquet, L.: Large slip effect at a nonwetting fluid–solid interface. Phys. Rev. Lett. 82, 4671–4674 (1999)CrossRefGoogle Scholar
  5. Bell, J.M., Cameron, F.: The flow of liquids through capillary spaces. J. Phys. Chem. 10, 658–674 (1906)CrossRefGoogle Scholar
  6. Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3d imaging of haines jumps in porous media flow. Proc. Natl. Acad. Sci. U. S. A. 110(10), 3755–3759 (2013).  https://doi.org/10.1073/pnas.1221373110 CrossRefGoogle Scholar
  7. Bocquet, L., Tabeling, P.: Physics and technological aspects of nanofluidics. Lab on a chip 14(17), 3143–3158 (2014).  https://doi.org/10.1039/c4lc00325j CrossRefGoogle Scholar
  8. Bonnaud, P.A., Coasne, B., Pellenq, R.J.M.: Molecular simulation of water confined in nanoporous silica. J. Phys. Condens. Matter 22(28), 284110 (2010).  https://doi.org/10.1088/0953-8984/22/28/284110 CrossRefGoogle Scholar
  9. Boţan, A., Ulm, F.J., Pellenq, R.J.M., Coasne, B.: Bottom-up model of adsorption and transport in multiscale porous media. Phys. Rev. E 91, 032133 (2015).  https://doi.org/10.1103/PhysRevE.91.032133 CrossRefGoogle Scholar
  10. Busch, M., Kityk, A.V., Piecek, W., Hofmann, T., Wallacher, D., Całus, S., Kula, P., Steinhart, M., Eich, M., Huber, P.: A ferroelectric liquid crystal confined in cylindrical nanopores: reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active goldstone excitations. Nanoscale 9(48), 19086–19099 (2017).  https://doi.org/10.1039/C7NR07273B CrossRefGoogle Scholar
  11. Cai, J.C., Yu, B.M.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89(2), 251–263 (2011).  https://doi.org/10.1007/s11242-011-9767-0 CrossRefGoogle Scholar
  12. Cao, B.Y., Yang, M., Hu, G.J.: Capillary filling dynamics of polymer melts in nanopores: experiments and rheological modelling. Rsc Adv. 6(9), 7553–7559 (2016).  https://doi.org/10.1039/c5ra24991k CrossRefGoogle Scholar
  13. Cieplak, M., Koplik, J., Banavar, J.R.: Boundary conditions at a fluid–solid interface. Phys. Rev. Lett. 86, 803–806 (2001).  https://doi.org/10.1103/PhysRevLett.86.803 CrossRefGoogle Scholar
  14. Clotet, X., Santucci, S., Ortín, J.: Experimental study of stable imbibition displacements in a model open fracture. II. Scale-dependent avalanche dynamics. Phys. Rev. E 93, 012150 (2016).  https://doi.org/10.1103/PhysRevE.93.012150 CrossRefGoogle Scholar
  15. Crossley, R.A., Schwartz, L.M., Banavar, J.R.: Image-based models of porous media: application to Vycor glass and carbonate rocks. Appl. Phys. Lett. 59, 3553–3555 (1991)CrossRefGoogle Scholar
  16. Debye, P., Cleland, R.L.: Flow of liquid hydrocarbons in porous Vycor. J. Appl. Phys. 30(6), 843–849 (1959)CrossRefGoogle Scholar
  17. de Jongh, P.E., Eggenhuisen, T.M.: Melt infiltration: an emerging technique for the preparation of novel functional nanostructured materials. Adv. Mater. 25(46), 6672–6690 (2013).  https://doi.org/10.1002/adma.201301912 CrossRefGoogle Scholar
  18. Dimitrov, D., Milchev, A., Binder, K.: Capillary rise in nanopores: molecular dynamics evidence for the Lucas–Washburn equation. Phys. Rev. Lett. 99, 054501 (2007)CrossRefGoogle Scholar
  19. Eijkel, J.C.T., van den Berg, A.: Nanofluidics: what is it and what can we expect from it? Nano Microfluid. 1, 249–267 (2005)CrossRefGoogle Scholar
  20. Elizalde, E., Urteaga, R., Koropecki, R.R., Berli, C.L.A.: Inverse problem of capillary filling. Phys. Rev. Lett. 112, 134502 (2014).  https://doi.org/10.1103/PhysRevLett.112.134502 CrossRefGoogle Scholar
  21. Falk, K., Coasne, B., Pellenq, R., Ulm, F.J., Bocquet, L.: Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nat. Commun. 6, 6949 (2015).  https://doi.org/10.1038/ncomms7949 CrossRefGoogle Scholar
  22. Feng, D., Li, X.F., Wang, X.Z., Li, J., Zhang, X.: Capillary filling under nanoconfinement: the relationship between effective viscosity and water–wall interactions. Int. J. Heat Mass Transf. 118, 900–910 (2018).  https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.049 CrossRefGoogle Scholar
  23. Gommes, C.J.: Stochastic models of disordered mesoporous materials for small-angle scattering analysis and more. Microporous Mesoporous Mater. 257, 62–78 (2018).  https://doi.org/10.1016/j.micromeso.2017.08.009 CrossRefGoogle Scholar
  24. Gor, G.Y., Huber, P., Bernstein, N.: Adsorption-induced deformation of nanoporous materials—a review. Appl. Phys. Rev. 4(1), 011303 (2017).  https://doi.org/10.1063/1.4975001 CrossRefGoogle Scholar
  25. Gor, G.Y., Huber, P., Weissmueller, J.: Elastocapillarity in nanopores: sorption strain from the actions of surface tension and surface stress. Phys. Rev. Mater. (2018) (in press)Google Scholar
  26. Gruener, S.: Rheology and dynamics of simple and complex liquids in mesoporous matrices. Ph.D. thesis, Saarland University, Saarbruecken (2010)Google Scholar
  27. Gruener, S., Huber, P.: Knudsen diffusion in silicon nanochannels. Phys. Rev. Lett. 100, 064502 (2008)CrossRefGoogle Scholar
  28. Gruener, S., Huber, P.: Spontaneous imbibition dynamics of an n-alkane in nanopores: evidence of meniscus freezing and monolayer sticking. Phys. Rev. Lett. 103, 174501 (2009)CrossRefGoogle Scholar
  29. Gruener, S., Huber, P.: Imbibition in mesoporous silica: rheological concepts and experiments on water and a liquid crystal. J. Phys. Condens. Matter 23(18), 184109 (2011).  https://doi.org/10.1088/0953-8984/23/18/184109 CrossRefGoogle Scholar
  30. Gruener, S., Hofmann, T., Wallacher, D., Kityk, A.V., Huber, P.: Capillary rise of water in hydrophilic nanopores. Phys. Rev. E 79, 067301 (2009)CrossRefGoogle Scholar
  31. Gruener, S., Sadjadi, Z., Hermes, H.E., Kityk, A.V., Knorr, K., Egelhaaf, S.U., Rieger, H., Huber, P.: Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores. Proc. Natl. Acad. Sci. U. S. A. 109(26), 10245–10250 (2012).  https://doi.org/10.1073/pnas.1119352109 CrossRefGoogle Scholar
  32. Gruener, S., Hermes, H.E., Schillinger, B., Egelhaaf, S.U., Huber, P.: Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: nano-rheology and determination of pore size distributions from the shape of imbibition fronts. Colloids Surf. A Physicochem. Eng. Asp. 496, 13–27 (2016a).  https://doi.org/10.1016/j.colsurfa.2015.09.055 CrossRefGoogle Scholar
  33. Gruener, S., Wallacher, D., Greulich, S., Busch, M., Huber, P.: Hydraulic transport across hydrophilic and hydrophobic nanopores: flow experiments with water and n-hexane. Phys. Rev. E 93(013102), 013102 (2016b).  https://doi.org/10.1103/PhysRevE.93.013102 CrossRefGoogle Scholar
  34. Hartmann, M., Schwieger, W.: Hierarchically-structured porous materials: from basic understanding to applications. Chem. Soc. Rev. 45, 3311–3312 (2016).  https://doi.org/10.1039/C6CS90043G CrossRefGoogle Scholar
  35. Hatzikiriakos, S.G.: Wall slip of molten polymers. Prog. Polym. Sci. (Oxf.) 37(4), 624–643 (2012).  https://doi.org/10.1016/j.progpolymsci.2011.09.004 CrossRefGoogle Scholar
  36. Hofmann, T., Wallacher, D., Mayorova, M., Zorn, R., Frick, B., Huber, P.: Molecular dynamics of n-hexane: a quasi-elastic neutron scattering study on the bulk and spatially nanochannel-confined liquid. J. Chem. Phys. 136(12), 124505 (2012).  https://doi.org/10.1063/1.3696684 CrossRefGoogle Scholar
  37. Holt, J.K., Park, H.G., Wang, Y.M., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)CrossRefGoogle Scholar
  38. Huber, P.: Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. J. Phys. Condens. Matter 27, 103102 (2015)CrossRefGoogle Scholar
  39. Huber, P., Knorr, K.: Adsorption–desorption isotherms and x-ray diffraction of Ar condensed into a porous glass matrix. Phys. Rev. B 60, 12657–12665 (1999)CrossRefGoogle Scholar
  40. Huber, P., Gruener, S., Schaefer, C., Knorr, K., Kityk, A.V.: Rheology of liquids in nanopores: a study on the capillary rise of water, n-hexadecane and n-tetracosane in mesoporous silica. Eur. Phys. J. Spec. Top. 141, 101–105 (2007)CrossRefGoogle Scholar
  41. Kelly, S., Torres-Verdin, C., Balhoff, M.T.: Influences of polarity and hydration cycles on imbibition hysteresis in silica nanochannels. Phys. Chem. Chem. Phys. 20(1), 456–466 (2018).  https://doi.org/10.1039/c7cp05833k CrossRefGoogle Scholar
  42. Kiepsch, S., Pelster, R.: Interplay of vapor adsorption and liquid imbibition in nanoporous vycor glass. Phys. Rev. E 93(4), 043128 (2016).  https://doi.org/10.1103/PhysRevE.93.043128 CrossRefGoogle Scholar
  43. Kirby, B.: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  44. Koklu, A., Li, J.N., Sengor, S., Beskok, A.: Pressure-driven water flow through hydrophilic alumina nanomembranes. Microfluid. Nanofluid. 21(7), 124 (2017).  https://doi.org/10.1007/s10404-017-1960-1 CrossRefGoogle Scholar
  45. Kornev, K.G., Neimark, A.V.: Spontaneous penetration of liquids into capillaries and porous membranes revisited. J. Colloid Interface Sci. 235(1), 101–113 (2001).  https://doi.org/10.1006/jcis.2000.7374 CrossRefGoogle Scholar
  46. Kriel, F.H., Sedev, R., Priest, C.: Capillary filling of nanoscale channels and surface structure. Isr. J. Chem. 54(11–12), 1519–1532 (2014).  https://doi.org/10.1002/ijch.201400086 CrossRefGoogle Scholar
  47. Kuijpers, C.J., van Stiphout, T.A.P., Huinink, H.P., Tomozeiu, N., Erich, S.J.F., Adan, O.C.G.: Quantitative measurements of capillary absorption in thin porous media by the automatic scanning absorptometer. Chem. Eng. Sci. 178, 70–81 (2018).  https://doi.org/10.1016/j.ces.2017.12.024 CrossRefGoogle Scholar
  48. Kusmin, A., Gruener, S., Henschel, A., Holderer, O., Allgaier, J., Richter, D., Huber, P.: Evidence of a sticky boundary layer in nanochannels: a neutron spin echo study of n-hexatriacontane and poly(ethylene oxide) confined in porous silicon rid b-7690-2008. J. Phys. Chem. Lett. 1(20), 3116–3121 (2010a).  https://doi.org/10.1021/jz1012406 CrossRefGoogle Scholar
  49. Kusmin, A., Gruener, S., Henschel, A., de Souza, N., Allgaier, J., Richter, D., Huber, P.: Polymer dynamics in nanochannels of porous silicon: a neutron spin echo study. Macromolecules 43(19), 8162–8169 (2010b).  https://doi.org/10.1021/ma1004925 CrossRefGoogle Scholar
  50. Kvick, M., Martinez, D.M., Hewitt, D.R., Balmforth, N.J.: Imbibition with swelling: capillary rise in thin deformable porous media. Phys. Rev. Fluids 2, 074001 (2017).  https://doi.org/10.1103/PhysRevFluids.2.074001 CrossRefGoogle Scholar
  51. Lasne, D., Maali, A., Amarouchene, Y., Cognet, L., Lounis, B., Kellay, H.: Velocity profiles of water flowing past solid glass surfaces using fluorescent nanoparticles and molecules as velocity probes. Phys. Rev. Lett. 100, 214502 (2008)CrossRefGoogle Scholar
  52. Levitz, P.: Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport. Adv. Colloids Interface Sci. 76, 71–106 (1998)CrossRefGoogle Scholar
  53. Levitz, P., Ehret, G., Sinha, S., Drake, J.: Porous Vycor glass: the microstructure as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption. J. Chem. Phys. 95, 6151–6161 (1991)CrossRefGoogle Scholar
  54. Li, Z., Seker, E.: Configurable microfluidic platform for investigating therapeutic delivery from biomedical device coatings. Lab Chip 17, 3331–3337 (2017).  https://doi.org/10.1039/C7LC00851A CrossRefGoogle Scholar
  55. Lin, M.Y., Abeles, B., Huang, J.S., Stasiewski, H.E., Zhang, Q.: Visocus flow and diffusion of liquids in microporous glasses. Phys. Rev. B 46, 10701 (1992)CrossRefGoogle Scholar
  56. Lucas, R.: U”ber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid Zeitschrift 23, 15–22 (1918)CrossRefGoogle Scholar
  57. Martin, J., Martin-Gonzalez, M., Francisco Fernandez, J., Caballero-Calero, O.: Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina. Nat. Commun. 5, 5130 (2014).  https://doi.org/10.1038/ncomms6130 CrossRefGoogle Scholar
  58. Meng, Q., Liu, H., Wang, J.: A critical review on fundamental mechanisms of spontaneous imbibition and the impact of boundary condition, fluid viscosity and wettability. Adv. Geo-Energy Res. 1, 1–17 (2017)CrossRefGoogle Scholar
  59. Montemore, M.M., Montessori, A., Succi, S., Barroo, C., Falcucci, G., Bell, D.C., Kaxiras, E.: Effect of nanoscale flows on the surface structure of nanoporous catalysts. J. Chem. Phys. 146(21), 214703 (2017).  https://doi.org/10.1063/1.4984614 CrossRefGoogle Scholar
  60. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., Craig, V.S.J.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)CrossRefGoogle Scholar
  61. Nordberg, M.E.: Properties of some vycor-brand glasses. J. Am. Ceram. Soc. 27, 299–305 (1944)CrossRefGoogle Scholar
  62. Ortiz-Young, D., Chiu, H.C., Kim, S., Voïtchovsky, K., Riedo, E.: The interplay between apparent viscosity and wettability in nanoconfined water. Nat. Commun. 4, 2482 (2013).  https://doi.org/10.1038/ncomms3482 CrossRefGoogle Scholar
  63. Persson, F., Thamdrup, L.H., Mikkelsen, M.B.L., Jaarlgard, S.E., Skafte-Pedersen, P., Bruus, H., Kristensen, A.: Double thermal oxidation scheme for the fabrication of SiO\(_2\) nanochannels. Nanotechnology 18(24), 245301 (2007).  https://doi.org/10.1088/0957-4484/18/24/245301 CrossRefGoogle Scholar
  64. Piruska, A., Gong, M., Sweedler, J.V., Bohn, P.W.: Nanofluidics in chemical analysis. Chem. Soc. Rev. 39(3), 1060–1072 (2010).  https://doi.org/10.1039/b900409m CrossRefGoogle Scholar
  65. Priezjev, N.V., Troian, S.M.: Molecular origin and dynamic behavior of slip in sheared polymer films. Phys. Rev. Lett. 92, 018302 (2004)CrossRefGoogle Scholar
  66. Rideal, E.K.: On the flow of liquids under capillary pressure. Philos. Mag. 44, 1152–1159 (1922)CrossRefGoogle Scholar
  67. Sadjadi, Z., Jung, M., Seemann, R., Rieger, H.: Meniscus arrest during capillary rise in asymmetric microfluidic pore junctions. Langmuir 31(8), 2600–2608 (2015).  https://doi.org/10.1021/la504149r CrossRefGoogle Scholar
  68. Schmatko, T., Hervet, H., Leger, L.: Friction and slip at simple fluid–solid interfaces: the roles of the molecular shape and the solid–liquid interaction. Phys. Rev. Lett. 94, 244501 (2005)CrossRefGoogle Scholar
  69. Schmid, K.S., Geiger, S.: Universal scaling of spontaneous imbibition for arbitrary petrophysical properties: water-wet and mixed-wet states and handy’s conjecture. J. Petrol. Sci. Eng. 101, 44–61 (2013).  https://doi.org/10.1016/j.petrol.2012.11.015 CrossRefGoogle Scholar
  70. Schoch, R.B., Han, J., Renaud, P.: Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)CrossRefGoogle Scholar
  71. Secchi, E., Marbach, S., Nigues, A., Stein, D., Siria, A., Bocquet, L.: Massive radius-dependent flow slippage in carbon nanotubes. Nature 537(7619), 210–213 (2016).  https://doi.org/10.1038/nature19315 CrossRefGoogle Scholar
  72. Sendner, C., Horinek, D., Bocquet, L., Netz, R.R.: Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir 25(18), 10768–10781 (2009).  https://doi.org/10.1021/la901314b CrossRefGoogle Scholar
  73. Sentker, K., Zantop, A.W., Lippmann, M., Hofmann, T., Seeck, O.H., Kityk, A.V., Yildirim, A., Schönhals, A., Mazza, M.G., Huber, P.: Quantized self-assembly of discotic rings in a liquid crystal confined in nanopores. Phys. Rev. Lett. 120, 067801 (2018).  https://doi.org/10.1103/PhysRevLett.120.067801 CrossRefGoogle Scholar
  74. Servantie, J., Mueller, M.: Temperature dependence of the slip length in polymer melts at attractive surfaces. Phys. Rev. Lett. 101(2), 026101 (2008).  https://doi.org/10.1103/PhysRevLett.101.026101 CrossRefGoogle Scholar
  75. Shen, A., Xu, Y., Liu, Y., Cai, B., Liang, S., Wang, F.: A model for capillary rise in micro-tube restrained by a sticky layer. Results Phys. 9, 86–90 (2018).  https://doi.org/10.1016/j.rinp.2018.02.026. http://www.sciencedirect.com/science/article/pii/S2211379717325457
  76. Shin, K., Obukhov, S., Chen, J.T., Huh, J., Hwang, Y., Mok, S., Dobriyal, P., Thiyagarajan, P., Russell, T.P.: Enhanced mobility of confined polymers. Nat. Mater. 6, 961–965 (2007)CrossRefGoogle Scholar
  77. Singh, K., Scholl, H., Brinkmann, M., Michiel, M.D., Scheel, M., Herminghaus, S., Seemann, R.: The role of local instabilities in fluid invasion into permeable media. Sci. Rep. 7(1), 444 (2017).  https://doi.org/10.1038/s41598-017-00191-y CrossRefGoogle Scholar
  78. Sousa, C.T., Leitao, D.C., Proenca, M.P., Ventura, J., Pereira, A.M., Araujo, J.P.: Nanoporous alumina as templates for multifunctional applications. Appl. Phys. Rev. 1(3), 031102 (2014).  https://doi.org/10.1063/1.4893546 CrossRefGoogle Scholar
  79. Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005)CrossRefGoogle Scholar
  80. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).  https://doi.org/10.1146/annurev.fluid.36.050802.122124 CrossRefGoogle Scholar
  81. Stroock, A.D., Pagay, V.V., Zwieniecki, M.A., Holbrook, N.M.: The physicochemical hydrodynamics of vascular plants. Annu. Rev. Fluid Mech. 46(46), 615–642 (2014).  https://doi.org/10.1146/annurev-fluid-010313-141411 CrossRefGoogle Scholar
  82. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360 (1997).  https://doi.org/10.1038/38686 CrossRefGoogle Scholar
  83. Valiullin, R., Naumov, S., Galvosas, P., Kaerger, J., Woo, H.J., Porcheron, F., Monson, P.A.: Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature 443(7114), 965–968 (2006).  https://doi.org/10.1038/nature05183 CrossRefGoogle Scholar
  84. Vincent, O., Szenicer, A., Stroock, A.D.: Capillarity-driven flows at the continuum limit. Soft Matter 12(31), 6656–6661 (2016).  https://doi.org/10.1039/c6sm00733c CrossRefGoogle Scholar
  85. Vincent, O., Marguet, B., Stroock, A.D.: Imbibition triggered by capillary condensation in nanopores. Langmuir 33(7), 1655–1661 (2017).  https://doi.org/10.1021/acs.langmuir.6b04534 CrossRefGoogle Scholar
  86. Vinogradova, O.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56, 31–60 (1999)CrossRefGoogle Scholar
  87. Vo, T.Q., Kim, B.: Transport phenomena of water in molecular fluidic channels. Sci. Rep. 6, 33881 (2016).  https://doi.org/10.1038/srep33881 CrossRefGoogle Scholar
  88. Vo, T.Q., Barisik, M., Kim, B.: Near-surface viscosity effects on capillary rise of water in nanotubes. Phys. Rev. E 92(5), 053009 (2015).  https://doi.org/10.1103/PhysRevE.92.053009 CrossRefGoogle Scholar
  89. Wang, S., Feng, Q., Javadpour, F., Yang, Y.B.: Breakdown of fast mass transport of methane through calcite nanopores. J. Phys. Chem. C 120(26), 14260–14269 (2016).  https://doi.org/10.1021/acs.jpcc.6b05511 CrossRefGoogle Scholar
  90. Washburn, E.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)CrossRefGoogle Scholar
  91. Wohlfarth, C., Wohlfarth, B.: Surface Tension of Pure Liquids and Binary Liquid Mixtures, Landolt-Börnstein—Group IV Physical Chemistry: Numerical Data and Functional Relationships in Science and Technology, vol. 16. Springer, Berlin (1997)Google Scholar
  92. Wu, K.L., Chen, Z.X., Li, J., Li, X.F., Xu, J.Z., Dong, X.H.: Wettability effect on nanoconfined water flow. Proc. Natl. Acad. Sci. U. S. A. 114(13), 3358–3363 (2017a).  https://doi.org/10.1073/pnas.1612608114 CrossRefGoogle Scholar
  93. Wu, P., Nikolov, A.D., Wasan, D.T.: Capillary rise: validity of the dynamic contact angle models. Langmuir 33(32), 7862–7872 (2017b).  https://doi.org/10.1021/acs.langmuir.7b01762. PMID: 28722421 CrossRefGoogle Scholar
  94. Xue, Y.H., Markmann, J., Duan, H.L., Weissmuller, J., Huber, P.: Switchable imbibition in nanoporous gold. Nat. Commun. 5, 4237 (2014)CrossRefGoogle Scholar
  95. Yamashita, K., Daiguji, H.: Molecular dynamics simulations of water uptake into a silica nanopore. J. Phys. Chem. C 119(6), 3012–3023 (2015).  https://doi.org/10.1021/jp5088493 CrossRefGoogle Scholar
  96. Yang, S., Dehghanpour, H., Binazadeh, M., Dong, P.C.: A molecular dynamics explanation for fast imbibition of oil in organic tight rocks. Fuel 190, 409–419 (2017).  https://doi.org/10.1016/j.fuel.2016.10.105 CrossRefGoogle Scholar
  97. Yao, Y., Alexandris, S., Henrich, F., Auernhammer, G., Steinhart, M., Butt, H.J., Floudas, G.: Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. J. Chem. Phys. 146(20), 203320 (2017).  https://doi.org/10.1063/1.4978298 CrossRefGoogle Scholar
  98. Yassin, M.R., Begum, M., Dehghanpour, H.: Organic shale wettability and its relationship to other petrophysical properties: a duvernay case study. Int. J. Coal Geol. 169(Complete), 74–91 (2017).  https://doi.org/10.1016/j.coal.2016.11.015 CrossRefGoogle Scholar
  99. Zhang, Y.: Size effect on nanochannel flow explored by the flow factor approach model. Int. J. Heat Mass Transf. 125, 681–685 (2018).  https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.064. https://www.sciencedirect.com/science/article/pii/S0017931017354856
  100. Zhang, T., Li, X.F., Li, J., Feng, D., Wu, K.L., Shi, J.T., Sun, Z., Han, S.: A fractal model for gas-water relative permeability in inorganic shale with nanoscale pores. Transp. Porous Media 122(2), 305–331 (2018a).  https://doi.org/10.1007/s11242-018-1006-5 CrossRefGoogle Scholar
  101. Zhang, Z., Wen, L.P., Jiang, L.: Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 47(2), 322–356 (2018b).  https://doi.org/10.1039/c7cs00688h CrossRefGoogle Scholar
  102. Zhou, M., Caré, S., Courtier-Murias, D., Faure, P., Rodts, S., Coussot, P.: Magnetic resonance imaging evidences of the impact of water sorption on hardwood capillary imbibition dynamics. Wood Sci. Technol. 52, 929–955 (2018).  https://doi.org/10.1007/s00226-018-1017-y CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Sorption and Permeation LaboratoryBASF SELudwigshafenGermany
  2. 2.Institute of Materials Physics and TechnologyHamburg University of TechnologyHamburg-HarburgGermany

Personalised recommendations