Transport in Porous Media

, Volume 125, Issue 2, pp 193–210 | Cite as

Dynamics of Viscous Entrapped Saturated Zones in Partially Wetted Porous Media

  • Shuoqi Li
  • Mingchao Liu
  • Dorian Hanaor
  • Yixiang Gan


As a typical multiphase fluid flow process, drainage in porous media is of fundamental interest both in nature and in industrial applications. During drainage processes in unsaturated soils and porous media in general, saturated regions, or clusters, in which a liquid phase fully occupies the pore space between solid grains, affect the relative permeability and effective stress of the system. Here, we experimentally study drainage processes in unsaturated granular media as a model porous system. The distribution of saturated clusters is analysed by optical imaging under different drainage conditions, with pore-scale information from Voronoi and Delaunay tessellation used to characterise the topology of saturated cluster distributions. By employing statistical analyses, we describe the observed spatial and temporal evolution of multiphase flow and fluid entrapment in granular media. Results indicate that the distributions of both the crystallised cell size and pore size are positively correlated to the spatial and temporal distribution of saturated cluster sizes. The saturated cluster size is found to follow a lognormal distribution, in which the generalised Bond number (\( Bo^{*} \)) correlates negatively to the scale parameter (μ) and positively to the shape parameter (σ). With further consideration of the total surface energy obtained based on liquid–air interfaces, we were able to include additional grain-scale information in the constitutive modelling of unsaturated soils using both the degree of saturation and generalised Bond number. These findings can be used to connect pore-scale behaviour with overall hydro-mechanical characteristics in granular systems.


Porous media Multiphase fluid flow Drainage process Saturated cluster Bond number 



The authors are grateful for the financial support from Australian Research Council (Projects DE130101639 and DP170102886) and The University of Sydney SOAR Fellowship.


  1. Aitchison, J., Brown, J.A.C.: The Lognormal Distribution, vol. 5. CUP Archive, Cambridge (1976)Google Scholar
  2. Aker, E., Jørgen Måløy, K., Hansen, A.: Viscous stabilization of 2D drainage displacements with trapping. Phys. Rev. Lett. 84(20), 4589–4592 (2000)CrossRefGoogle Scholar
  3. Al-Fossail, K., Handy, L.L.: Correlation between capillary number and residual water saturation. J. Colloid Interface Sci. 134(1), 256–263 (1990)CrossRefGoogle Scholar
  4. Alim, K., Parsa, S., Weitz, D.A., Brenner, M.P.: Local pore size correlations determine flow distributions in porous media. Phys. Rev. Lett. 119(14), 144501 (2017)CrossRefGoogle Scholar
  5. Alvarez, N.J., Walker, L.M., Anna, S.L.: A non-gradient based algorithm for the determination of surface tension from a pendant drop: application to low Bond number drop shapes. J. Colloid Interface Sci. 333(2), 557–562 (2009)CrossRefGoogle Scholar
  6. Auradou, H., Måløy, K.J., Schmittbuhl, J., Hansen, A., Bideau, D.: Competition between correlated buoyancy and uncorrelated capillary effects during drainage. Phys. Rev. E 60(6), 7224–7234 (1999)CrossRefGoogle Scholar
  7. Bear, J., Braester, C.: On the flow of two immscible fluids in fractured porous media. In: Iahr (ed.) Developments in Soil Science, pp. 177–202. Elsevier, Amsterdam (1972)Google Scholar
  8. Birovljev, A., Furuberg, L., Feder, J., Jssang, T., Mly, K.J., Aharony, A.: Gravity invasion percolation in two dimensions: experiment and simulation. Phys. Rev. Lett. 67(5), 584–587 (1991)CrossRefGoogle Scholar
  9. Blom, S.M.P., Hagoort, J.: How to Include the Capillary Number in Gas Condensate Relative Permeability Functions?. Society of Petroleum Engineers, New Orleans (1998)CrossRefGoogle Scholar
  10. Blunt, M.J., Jackson, M.D., Piri, M., Valvatne, P.H.: Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25(8–12), 1069–1089 (2002)CrossRefGoogle Scholar
  11. Bryant, S., Blunt, M.: Prediction of relative permeability in simple porous media. Phys. Rev. A 46(4), 2004–2011 (1992)CrossRefGoogle Scholar
  12. Crisp, D.J., Williams, R.: Direct measurement of pore-size distribution on artificial and natural deposits and prediction of pore space accessible to interstitial organisms. Mar. Biol. 10(3), 214–226 (1971)CrossRefGoogle Scholar
  13. Dai, F.C., Lee, C.F., Ngai, Y.Y.: Landslide risk assessment and management: an overview. Eng. Geol. 64(1), 65–87 (2002)CrossRefGoogle Scholar
  14. Dullien, F.A.L., Lai, F.S.Y., MacDonald, I.F.: Hydraulic continuity of residual wetting phase in porous media. J. Colloid Interface Sci. 109(1), 201–218 (1986)CrossRefGoogle Scholar
  15. Gawlinski, E.T., Stanley, H.E.: Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs. J. Phys. A: Math. Gen. 14(8), L291 (1981)CrossRefGoogle Scholar
  16. Ginos, B.F.: Parameter estimation for the lognormal distribution [M.S. thesis]. Brigham Young University, Provo, Utah (2009).Google Scholar
  17. Gouyet, J., Rosso, M., Sapoval, B.: Fractal structure of diffusion and invasion fronts in three-dimensional lattices through the gradient percolation approach. Phys. Rev. B: Condens. Matter 37(4), 1832 (1988)CrossRefGoogle Scholar
  18. Haines, W.B.: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20(1), 97–116 (2009)CrossRefGoogle Scholar
  19. Holzner, M., Morales, V.L., Willmann, M., Dentz, M.: Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92(1), 013015 (2015)CrossRefGoogle Scholar
  20. Hoogland, F., Lehmann, P., Or, D.: The formation of viscous limited saturation zones behind rapid drainage fronts in porous media. Water Resour. Res. 51(12), 9862–9890 (2015)CrossRefGoogle Scholar
  21. Hunt, A., Ewing, R., Ghanbarian, B.: Percolation Theory for Flow in Porous Media, vol. 880. Springer, Berlin (2014)Google Scholar
  22. Kueper, B.H., Frind, E.O.: An overview of immiscible fingering in porous media. J. Contam. Hydrol. 2(2), 95–110 (1988)CrossRefGoogle Scholar
  23. Lee Rodgers, J., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42(1), 59–66 (1988)CrossRefGoogle Scholar
  24. Lenormand, R., Zarcone, C.: Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54(20), 2226–2229 (1985)CrossRefGoogle Scholar
  25. Lenormand, R., Zarcone, C.: Capillary fingering: percolation and fractal dimension. Transp. Porous Media 4(6), 599–612 (1989)CrossRefGoogle Scholar
  26. Likos, W.J.: Effective stress in unsaturated soil: accounting for surface tension and interfacial area. Vadose Zone J. (2014). CrossRefGoogle Scholar
  27. Løvoll, G., Jankov, M., Måløy, K.J., Toussaint, R., Schmittbuhl, J., Schäfer, G., Méheust, Y.: Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Transp. Porous Media 86(1), 305–324 (2011)CrossRefGoogle Scholar
  28. Måløy, K.J., Feder, J., Jøssang, T.: Viscous fingering fractals in porous media. Phys. Rev. Lett. 55(24), 2688–2691 (1985)CrossRefGoogle Scholar
  29. Matyka, M., Gołembiewski, J., Koza, Z.: Power-exponential velocity distributions in disordered porous media. Phys. Rev. E 93(1), 013110 (2016)CrossRefGoogle Scholar
  30. Meakin, P., Coniglio, A., Stanley, H.E., Witten, T.A.: Scaling properties for the surfaces of fractal and nonfractal objects: an infinite hierarchy of critical exponents. Phys. Rev. A 34(4), 3325–3340 (1986)CrossRefGoogle Scholar
  31. Méheust, Y., Løvoll, G., Måløy, K.J., Schmittbuhl, J.: Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects. Phys. Rev. E 66(5), 051603 (2002)CrossRefGoogle Scholar
  32. Moebius, F., Or, D.: Pore scale dynamics underlying the motion of drainage fronts in porous media. Water Resour. Res. 50(11), 8441–8457 (2014)CrossRefGoogle Scholar
  33. Morrow, N.R.: Irreducible wetting-phase saturations in porous media. Chem. Eng. Sci. 25(11), 1799–1815 (1970)CrossRefGoogle Scholar
  34. Myung, I.J.: Tutorial on maximum likelihood estimation. J. Math. Psychol. 47(1), 90–100 (2003)CrossRefGoogle Scholar
  35. Or, D.: Scaling of capillary, gravity and viscous forces affecting flow morphology in unsaturated porous media. Adv. Water Resour. 31(9), 1129–1136 (2008)CrossRefGoogle Scholar
  36. Paterson, L.: Diffusion-limited aggregation and two-fluid displacements in porous media. Phys. Rev. Lett. 52(18), 1621–1624 (1984)CrossRefGoogle Scholar
  37. Podgorski, T., Flesselles, J.M., Limat, L.: Corners, cusps, and pearls in running drops. Phys. Rev. Lett. 87(3), 036102 (2001)CrossRefGoogle Scholar
  38. Rahimi-Gorji, M., Gorji, T.B., Gorji-Bandpy, M.: Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Comput. Biol. Med. 74, 1–17 (2016)CrossRefGoogle Scholar
  39. Saba, T., Illangasekare, T.H.: Effect of groundwater flow dimensionality on mass transfer from entrapped nonaqueous phase liquid contaminants. Water Resour. Res. 36(4), 971–979 (2000)CrossRefGoogle Scholar
  40. Savani, I., Sinha, S., Hansen, A., Bedeaux, D., Kjelstrup, S., Vassvik, M.: A Monte Carlo algorithm for immiscible two-phase flow in porous media. Transp. Porous Media 116(2), 869–888 (2017)CrossRefGoogle Scholar
  41. Scheidegger, A.E.: The physics of flow through porous media. Soil Sci. 86(6), 355 (1958)CrossRefGoogle Scholar
  42. Scherer, G.W., Valenza Ii, J.J., Simmons, G.: New methods to measure liquid permeability in porous materials. Cem. Concr. Res. 37(3), 386–397 (2007)CrossRefGoogle Scholar
  43. Schwarze, R., Gladkyy, A., Uhlig, F., Luding, S.: Rheology of weakly wetted granular materials: a comparison of experimental and numerical data. Granul. Matter 15(4), 455–465 (2013)CrossRefGoogle Scholar
  44. Seymour, J.D., Gage, J.P., Codd, S.L., Gerlach, R.: Anomalous fluid transport in porous media induced by biofilm growth. Phys. Rev. Lett. 93(19), 198103 (2004)CrossRefGoogle Scholar
  45. Simmons, C.T., Narayan, K.A., Wooding, R.A.: On a test case for density-dependent groundwater flow and solute transport models: the Salt Lake Problem. Water Resour. Res. 35(12), 3607–3620 (1999)CrossRefGoogle Scholar
  46. Su, G.W., Geller, J.T., Hunt, J.R., Pruess, K.: Small-scale features of gravity-driven flow in unsaturated fractures. Vadose Zone J. 3, 592–601 (2004)CrossRefGoogle Scholar
  47. Vishnudas, R., Chaudhuri, A.: A comprehensive numerical study of immiscible and miscible viscous fingers during chemical enhanced oil recovery. Fuel 194, 480–490 (2017)CrossRefGoogle Scholar
  48. Wildenschild, D., Hopmans, J., Rivers, M., Kent, A.: Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 4(1), 112–126 (2005)CrossRefGoogle Scholar
  49. Xu, H., Xie, K.: Effective stress in soils under different saturation conditions. J. Cent. South Univ. Technol. 18(6), 2137–2142 (2011)CrossRefGoogle Scholar
  50. Youngs, E.G.: The drainage of liquids from porous materials. J. Geophys. Res. 65(12), 4025–4030 (1960)CrossRefGoogle Scholar
  51. Youngs, E.G., Aggelides, S.: Drainage to a water table analysed by the Green-Ampt approach. J. Hydrol. 31(1–2), 67–79 (1976)CrossRefGoogle Scholar
  52. Zhao, B., MacMinn, C.W., Juanes, R.: Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. 113(37), 10251–10256 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Civil EngineeringThe University of SydneySydneyAustralia
  2. 2.Department of Engineering Mechanics, CNMM & AMLTsinghua UniversityBeijingChina
  3. 3.Chair of Advanced Ceramic MaterialsTechnische Universität BerlinBerlinGermany

Personalised recommendations