Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stabilized Low-Order Explicit Finite Element Formulations for the Coupled Hydro-Mechanical Analysis of Saturated Poroelastic Media

Abstract

We developed new stabilized low-order explicit finite element formulations for analysing the fully coupled hydro-mechanical behaviour of fluid-saturated poroelastic media. For space stabilization, the low-order U-p finite element employs two stabilization schemes. One stabilization scheme is based on the polynomial pressure projection technique in the fluid phase. The other one assumes enhanced strain field for the solid-phase terms. For time stabilization, an unconditionally stable explicit integration formula is proposed for discretization in the time domain to eliminate the time-step-size sensitivity of the temporal discretization finite difference format. The performance of the proposed formulations is demonstrated through four numerical examples. The proposed formulations not only agree strongly with the analytical/reference solutions, but also yield unconditionally stable high-precision results that outperform the standard finite element combined finite difference scheme. The modelling results indicate the proposed schemes possess significant advantages in terms of precision and computational efficiency for large timescales and adaptability to space-domain discretization. The proposed schemes have great potential in engineering applications for large timescale problems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Abbreviations

b :

Body force vector

E :

Young’s modulus

E :

Parameter interpolation matrix

\( {\bf{f}}^{{u}} \) :

Vector of the nodal loads

\( {\tilde{\bf{f}}}^{{u}} \) :

Vector of the nodal loads by static condensation

\( {\bf{f}}^{{p}} \) :

Vector of the flow sources

g :

Gravitational acceleration

G :

Shear modulus

G :

Internal shape function matrix

h :

Element size

H :

Flow stiffness

\( {\bar{\bf{H}}} \) :

Exponential term matrix

\( {\mathbf{I}} \) :

Unit matrix

\( {\text{K}}_{{dr}} \) :

Drained bulk modulus

\( {\text{K}}_{\text{s}} \) :

Bulk modulus of the solid grain

\( {\text{K}}_{f} \) :

Bulk modulus of the fluid

\( {\bf{k}}_{{f}} \) :

Permeability tensor

\( {\text{k}} \) :

Hydraulic conductivity tensor

K :

Elastic stiffness matrix

\( {\tilde{\bf{K}}} \) :

Elastic stiffness matrix by static condensation

\( {\bar{\bf{K}}} \) :

Coefficient matrix

l :

Second-order unit tensor

L :

Parameter

\( {\bar{\bf{M}}} \) :

Coefficient matrix

m :

Parameter

n :

Porosity

n :

Unit normal vector at the domain boundary

\( {\text{n}}_{\text{ele}} \) :

Number of elements

N :

Parameter

\( {\bf{N}}^{{u}} \) :

Displacement shape functions

\( {\bf{N}}^{{p}} \) :

Pore pressure shape functions

p :

Fluid pore pressure

\( {\text{Q}} \) :

Fluid mass flux from a sink or source

\( {\text{Q}}^{ *} \) :

Biot’s modulus

Q :

Flow–stress coupling matrix

\( {\tilde{\bf{Q}}} \) :

Flow–stress coupling matrix by static condensation

\( {\mathbf{r}}_{0} \) :

Constant parts of external load

\( {\mathbf{r}}_{1} \) :

Constant parts of external load

L :

Flow capacity matrix

S :

Transformation matrix

\( {\tilde{\bf{S}}} \) :

Transformation matrix by static condensation

\( {\bf{S}}^{\text{stab}} \) :

Stabilization term matrix

T :

Exponential matrix

\( {\bf{T}}_{\text{a}} \) :

Substructure of exponential matrix

u :

Displacement vectors

U :

Solid admissible displacement

\( {\bf{v}} \) :

Darcy’s velocity vector of fluid flow

\( V^{\varOmega } \) :

Area of integral domain

w :

Weighted residual parameter

\( {\tilde{\bf{w}}} \) :

Additional weighted residual parameter

x :

Vector of global unknown variables

\( \alpha \) :

Biot’s coefficient

\( {\varvec{\upalpha}} \) :

Vector that contains the internal strain parameters

\( \gamma_{f} \) :

Unit weight of the fluid

\(\varvec \varepsilon \) :

Strain tensor under the assumption of infinitesimal transformation

\( \tilde{\varvec \varepsilon } \) :

Additional strain field

\( \zeta \) :

Coordinate component in the isoparametric space

η :

Coordinate component in the isoparametric space

\( \nu \) :

Poisson’s ratio

θ :

Integration parameter

\(\varvec \varTheta \) :

Solid skeleton stiffness tensor

ϑ :

Stabilization parameter

\( \rho_{{f}} \) :

Fluid density

\( \boldsymbol{\sigma} \) :

Total stress tensor

\( {\boldsymbol{\sigma}}^{{\prime }} \) :

Effective stress tensor

τ 0 :

Constant multiplier

τ :

Downscaling time-step size

φ :

Weighted residual parameter

\( \varGamma \) :

Domain boundary

\( \varGamma_{\sigma } \) :

Solid traction boundary

\( \varGamma_{{u}} \) :

Displacement boundary

\( \varGamma_{{p}} \) :

Pore pressure boundary

\( \varGamma_{{q}} \) :

Velocity (flux) boundary

\( \varUpsilon \) :

Weak forms of the governing equations

\( \varUpsilon^{\text{stab}} \) :

Stabilization term introduced into the variational form

\( \varPsi \) :

Weak forms of the governing equations

\( \varPhi \) :

Weak forms of the governing equations

\( {\varvec{\Omega}} \) :

Domain

\( \prod {\left( \cdot \right)} \) :

Projection operator for calculating the domain volume average

\( \bigcup {\left( \cdot \right)} \) :

Union operation symbol

References

  1. Abbasi, N., Rahimi, H., Javadi, A.A., Fakher, A.: Finite difference approach for consolidation with variable compressibility and permeability. Comput. Geotech. 34(1), 41–52 (2007)

  2. Abousleiman, Y., Cheng, A.D., Cui, L., Detournay, E., Roegiers, J.C.: Mandel’s problem revisited. Geotechnique 46(2), 187–195 (1996)

  3. Asadi, R., Ataie-Ashtiani, B., Simmons, C.T.: Finite volume coupling strategies for the solution of a Biot consolidation model. Comput. Geotech. 55, 494–505 (2014)

  4. Barbosa, H.J., Hughes, T.J.: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition. Comput. Methods Appl. Mech. Eng. 85(1), 109–128 (1991)

  5. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

  6. Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)

  7. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle, Analyse numérique 8(R2), 129–151 (1974)

  8. Carneiro, J.F.: Numerical simulations on the influence of matrix diffusion to carbon sequestration in double porosity fissured aquifers. Int. J. Greenhouse Gas Control 3(4), 431–443 (2009)

  9. Ferronato, M., Castelletto, N., Gambolati, G.: A fully coupled 3-D mixed finite element model of Biot consolidation. J. Comput. Phys. 229(12), 4813–4830 (2010)

  10. Haga, J.B., Osnes, H., Langtangen, H.P.: On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int. J. Numer. Anal. Meth. Geomech. 36(12), 1507–1522 (2012)

  11. Khoshghalb, A., Khalili, N., Selvadurai, A.P.S.: A three-point time discretization technique for parabolic partial differential equations. Int. J. Numer. Anal. Meth. Geomech. 35(3), 406–418 (2011)

  12. Khoshghalb, A., Khalili, N.: An alternative approach for quasi-static large deformation analysis of saturated porous media using meshfree method. Int. J. Numer. Anal. Meth. Geomech. 39(9), 913–936 (2015)

  13. Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput. Methods Appl. Mech. Eng. 200(23–24), 2094–2116 (2011)

  14. Korsawe, J., Starke, G., Wang, W., Kolditz, O.: Finite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches. Comput. Methods Appl. Mech. Eng. 195(9–12), 1096–1115 (2006)

  15. Larsson, F., Runesson, K.: A sequential-adaptive strategy in space–time with application to consolidation of porous media. Comput. Methods Appl. Mech. Eng. 288, 146–171 (2015)

  16. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, London (1998)

  17. Li, G.: A four-node plane parametric element based on quadrilateral area coordinate and its application to coupled solid-deformation/fluid-flow simulation for porous geomaterials. Int. J. Numer. Anal. Meth. Geomech. 39(3), 251–276 (2015)

  18. Li, X., Han, X., Pastor, M.: An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics. Comput. Methods Appl. Mech. Eng. 192(35–36), 3845–3859 (2003)

  19. Mandel, J.: Consolidation des sols (étude mathématique). Geotechnique 3(7), 287–299 (1953)

  20. Mira, P., Pastor, M., Li, T., Liu, X.: A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems. Comput. Methods Appl. Mech. Eng. 192(37–38), 4257–4277 (2003)

  21. Murad, M.A., Loula, A.F.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Meth. Eng. 37(4), 645–667 (1994)

  22. Ngien, S.K., Rahman, N.A., Lewis, R.W., Ahmad, K.: Numerical modelling of multiphase immiscible flow in double-porosity featured groundwater systems. Int. J. Numer. Anal. Methods Geomech. 36(10), 1330–1349 (2012)

  23. Pian, T.H., Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20(9), 1685–1695 (1984)

  24. Preisig, M., Prévost, J.H.: Stabilization procedures in coupled poromechanics problems: A critical assessment. Int. J. Numer. Anal. Methods Geomech. 35(11), 1207–1225 (2011)

  25. Samimi, S., Pak, A.: Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method. Comput. Geotech. 46, 75–83 (2012)

  26. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29(8), 1595–1638 (1990)

  27. Sloan, S.W., Abbo, A.J.: Biot consolidation analysis with automatic time stepping and error control Part I: theory and implementation. Int. J. Numer. Anal. Methods Geomech. 23(6), 467–492 (1999)

  28. Sun, W., Ostien, J.T., Salinger, A.G.: A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain. Int. J. Numer. Anal. Methods Geomech. 37(16), 2755–2788 (2013)

  29. Sun, W.C.: A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain. Int. J. Numer. Methods Eng. 103(11), 798–839 (2015)

  30. Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer Grundlage (1925)

  31. Tootoonchi, A., Khoshghalb, A., Liu, G.R., Khalili, N.: A cell-based smoothed point interpolation method for flow-deformation analysis of saturated porous media. Comput. Geotech. 75, 159–173 (2016)

  32. Turska, E., Schrefler, B.A.: On convergence conditions of partitioned solution procedures for consolidation problems. Comput. Methods Appl. Mech. Eng. 106(1–2), 51–63 (1993)

  33. Turska, E., Wisniewski, K., Schrefler, B.A.: Error propagation of staggered solution procedures for transient problems. Comput. Methods Appl. Mech. Eng. 114(1–2), 177–188 (1994)

  34. Vecchia, G.D., Romero, E.: A fully coupled elastic–plastic hydromechanical model for compacted soils accounting for clay activity. Int. J. Numer. Anal. Methods Geomech. 37(5), 503–535 (2013)

  35. Verruijt, A.: Discussion. In: Proceedings 6th international conference on soil mechanics and foundation engineering, Montreal pp. 401–402. (1965)

  36. Wei, H., Chen, J.S., Hillman, M.: A stabilized nodally integrated meshfree formulation for fully coupled hydro-mechanical analysis of fluid-saturated porous media. Comput. Fluids 141, 105–115 (2015)

  37. White, J.A., Borja, R.I.: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Eng. 197(49–50), 4353–4366 (2008)

  38. Zendehboudi, S., Mohammadzadeh, O., Chatzis, I.: Experimental study of controlled gravity drainage in fractured porous media. In: Canadian International Petroleum Conference. Petroleum Society of Canada, (2009)

  39. Zendehboudi, S., Shafiei, A., Chatzis, I., Dusseault, M.B.: Numerical simulation of free fall and controlled gravity drainage processes in porous media. J. Porous Media 15(3), 211–232 (2012)

  40. Zendehboudi, S., Elkamel, A., Chatzis, I., Ahmadi, M.A., Bahadori, A., Lohi, A.: Estimation of breakthrough time for water coning in fractured systems: Experimental study and connectionist modeling. AIChE J. 60(5), 1905–1919 (2014)

  41. Zhong, W.X., Williams, F.W.: A precise time step integration method. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 208(6), 427–430 (1994)

  42. Zhong, W.X.: On precise integration method. J. Comput. Appl. Math. 163, 59–78 (2004)

  43. Zienkiewicz, O.C., Qu, S., Taylor, R.L., Nakazawa, S.: The patch test for mixed formulations. Int. J. Numer. Methods Eng. 23(10), 1873–1883 (1986)

Download references

Acknowledgements

This work is supported in part by the National Science Foundation of China (51679028), State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology (SKLGDUEK1804) and the Fundamental Research Funds for the Central Universities (DUT18JC10).

Author information

Correspondence to Gen Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, G., Wang, K. Stabilized Low-Order Explicit Finite Element Formulations for the Coupled Hydro-Mechanical Analysis of Saturated Poroelastic Media. Transp Porous Med 124, 1035–1059 (2018). https://doi.org/10.1007/s11242-018-1109-z

Download citation

Keywords

  • Hydro-mechanically coupled processes
  • Poroelasticity
  • Low-order finite element
  • Unconditionally stable